AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Design of solid-state sodium-ion batteries with high mass-loading cathode by porous-dense bilayer electrolyte

Hongjian Laia,b,cYanpei Lia,bJingyi Wanga,bWenWen Lia,bXiangwei Wua( )Zhaoyin Wena,c( )
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

● The vertically porous β”-Al2O3 layer is prepared by a facile ice-templet method.

Abstract

Solid-state sodium-ion batteries with sodium metal anodes possess high safety and reliability, which are considered as a promising candidate for the next generation of energy storage technology. However, poor electronic and ionic conductivities at the interface between electrodes and solid-state electrolytes restrict its practical application. Herein, we demonstrate a β″-Al2O3 electrolyte with a vertically porous-dense bilayer structure to solve this problem. The carbon-coated vertically porous layer serves as a high mass-loading host for Na3V2(PO4)3 cathode and provides fast electronically and ionically conductive pathways. In addition, the dense layer is produced to prevent sodium dendrite growth and improve mechanical strength of β″-Al2O3 electrolyte. Experimental results show that the cathode loading in vertically porous layer can reach to 8 mg cm−2, and the porous-dense bilayer β″-Al2O3 electrolyte-based battery exhibits a reversible specific capacity of 87 mAh g−1 and a capacity retention of 95.5% over 100 cycles at a current density of 0.1 C, which is superior to that of the traditional dense β″-Al2O3 electrolyte-based battery. This work based on electrolyte structure design represents an efficient strategy for the development of solid-state sodium-ion batteries with high mass-loading cathode.

References

[1]
Crawley MJ. Committee ecology. Nature 1986;322(6076):219. https://doi.org/10.1038/322219a0. 219.
[2]

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7(1):19-29. https://doi.org/10.1038/nchem.2085.

[3]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414(6861):359–67. https://doi.org/10.1038/35104644.

[4]

Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 2016;116(1):140–62. https://doi.org/10.1021/acs.chemrev.5b00563.

[5]

Zhao LN, Zhang T, Zhao HL, Hou YL. Polyanion-type electrode materials for advanced sodium-ion batteries. Materials Today Nano 2020;10. https://doi.org/10.1016/j.mtnano.2020.100072.

[6]

Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater 2013;23(8):947–58. https://doi.org/10.1002/adfm.201200691.

[7]

Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci 2013;6(8). https://doi.org/10.1039/c3ee41031e.

[8]

Niu YB, Yin YX, Guo YG. Nonaqueous sodium-ion full cells: status, strategies, and prospects. Small 2019;15(32) e1900233. https://doi.org/10.1002/smll.201900233.

[9]

Hou W, Guo X, Shen X, Amine K, Yu H, Lu J. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy 2018;52:279–91. https://doi.org/10.1016/j.nanoen.2018.07.036.

[10]

Kim J-J, Yoon K, Park I, Kang K. Progress in the development of sodium-ion solid electrolytes. Small Methods 2017;1(10). https://doi.org/10.1002/smtd.201700219.

[11]

Zhang Z, Zhang Q, Shi J, Chu YS, Yu X, Xu K, Ge M, Yan H, Li W, Gu L, Hu Y-S, Li H, Yang X-Q, Chen L, Huang X. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv Energy Mater 2017;7(4). https://doi.org/10.1002/aenm.201601196.

[12]

Chi X, Liang Y, Hao F, Zhang Y, Whiteley J, Dong H, Hu P, Lee S, Yao Y. Tailored organic electrode material compatible with sulfide electrolyte for stable All-solid-state sodium batteries. Angew Chem Int Ed Engl 2018;57(10):2630–4. https://doi.org/10.1002/anie.201712895.

[13]

Zhang Q, Liu K, Ding F, Liu X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res 2017;10(12):4139–74. https://doi.org/10.1007/s12274-017-1763–4.

[14]

Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu Y-S, Chen L. Solid-state sodium batteries. Adv Energy Mater 2018;8(17). https://doi.org/10.1002/aenm.201703012.

[15]

Wenzel S, Leichtweiss T, Weber DA, Sann J, Zeier WG, Janek J. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium beta-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl Mater Interfaces 2016;8(41):28216–24. https://doi.org/10.1021/acsami.6b10119.

[16]

Lu X, Kirby BW, Xu W, Li G, Kim JY, Lemmon JP, Sprenkle VL, Yang Z. Advanced intermediate-temperature Na–S battery. Energy Environ Sci 2013;6(1):299-306. https://doi.org/10.1039/c2ee23606k.

[17]

Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 2013;6(3). https://doi.org/10.1039/c3ee24086j.

[18]

Wu T, Zhang S, Ao X, Wu X, Yang J, Wen Z. Enhanced stability performance of nickel nanowire with 3D conducting network for planar sodium-nickel chloride batteries. J Power Sources 2017;360:345–52. https://doi.org/10.1016/j.jpowsour.2017.06.015.

[19]

Hueso KB, Palomares V, Armand M, Rojo T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res 2017;10(12):4082–114. https://doi.org/10.1007/s12274-017-1602–7.

[20]

Wang Z, Yang L, Liu J, Song Y, Zhao Q, Yang K, Pan F. Tuning rate-limiting factors to achieve ultrahigh-rate solid-state sodium-ion batteries. ACS Appl Mater Interfaces 2020;12(43):48677–83. https://doi.org/10.1021/acsami.0c15015.

[21]

Zhou C, Bag S, Thangadurai V. Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 2018;3(9):2181–98. https://doi.org/10.1021/acsenergylett.8b00948.

[22]

Liu L, Qi X, Ma Q, Rong X, Hu YS, Zhou Z, Li H, Huang X, Chen L. Toothpaste-like electrode: a novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life. ACS Appl Mater Interfaces 2016;8(48):32631–6. https://doi.org/10.1021/acsami.6b11773.

[23]

Zhao K, Liu Y, Zhang S, He S, Zhang N, Yang J, Zhan Z. A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na-β″-Al2O3 electrolyte and NaTi2(PO4)3 cathode. Electrochem Commun 2016;69:59-63. https://doi.org/10.1016/j.elecom.2016.06.003.

[24]

Wu T, Zhang W, Li Y, Zheng Y, Yu B, Chen J, Sun X. Micro-/Nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance. Adv Energy Mater 2018;8(33). https://doi.org/10.1002/aenm.201802203.

[25]

Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C, Seznec V. An all-solid state NASICON sodium battery operating at 200 ℃. J Power Sources 2014;247:975–80. https://doi.org/10.1016/j.jpowsour.2013.09.051.

[26]

An Q, Xiong F, Wei Q, Sheng J, He L, Ma D, Yao Y, Mai L. Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism. Adv Energy Mater 2015;5(10). https://doi.org/10.1002/aenm.201401963.

[27]

Wen Z, Hu Y, Wu X, Han J, Gu Z. Main challenges for high performance NAS battery: materials and interfaces. Adv Funct Mater 2013;23(8):1005–18. https://doi.org/10.1002/adfm.201200473.

[28]

Gao H, Zhou W, Park K, Goodenough JB. A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte. Adv Energy Mater 2016;6(18). https://doi.org/10.1002/aenm.201600467.

[29]

Zhang Z, Chen S, Yao X, Cui P, Duan J, Luo W, Huang Y, Xu X. Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures. Energy Storage Mater 2020;24:714–8. https://doi.org/10.1016/j.ensm.2019.06.006.

[30]

Fu K, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ Sci 2017;10(7):1568–75. https://doi.org/10.1039/c7ee01004d.

Journal of Materiomics
Pages 1352-1357
Cite this article:
Lai H, Li Y, Wang J, et al. Design of solid-state sodium-ion batteries with high mass-loading cathode by porous-dense bilayer electrolyte. Journal of Materiomics, 2021, 7(6): 1352-1357. https://doi.org/10.1016/j.jmat.2021.03.010

162

Views

11

Crossref

11

Web of Science

12

Scopus

Altmetrics

Received: 19 January 2021
Revised: 08 March 2021
Accepted: 11 March 2021
Published: 17 March 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return