AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Machine learning of metal-ceramic wettability

So Yeon KimJu Li( )
Department of Materials Science and Engineering and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The adhesion and wetting between metal and ceramic is a basic problem in materials science and engineering. For example, past materials selection for metal-ceramic composites has relied on random trials and heuristics due to a limited understanding of their adhesion; the large chemical/structural variability that such interfaces can have hinders the identification of the governing factors. Here based on literature data, we have developed a database with ~1, 000 experimentally measured wetting angles at different temperatures and atmospheric conditions, and come up with a model for the wettability of ionocovalent ceramics (ICs) by metals using a machine learning (ML) algorithm. The random forest model uses the testing temperature and ~40 features generated based on the chemical compositions of the metal and the ceramic as predictors and exhibits strong predictive power with an R2 of ~0.86. Moreover, this model and the featurization code are integrated into a single computational pipeline to enable (1) predicting metal-IC wettability of interest and (2) high-throughput searching of ICs with the desired wettability by certain metals in the entire Inorganic Crystallographic Structure Database. As a demonstration of this pipeline, the wettability of a Li-ion and electron insulator (LEI), CaO, by molten Li is estimated and compared with ab initio molecular dynamics simulation result. This ML pipeline can serve as a practical tool for methodical design of materials in systems where certain metal-ceramic wettability is desired.

References

[1]

Odette GR, Alinger MJ, Wirth BD. Recent developments in irradiation-resistant steels. Annu Rev Mater Res 2008;38: 471-503. https://doi.org/10.1146/annurev.matsci.38.060407.130315.

[2]

So KP, Kushima A, Park JG, Liu X, Keum DH, Jeong HY, Yao F, Joo SH, Kim HS, Kim H, Li J, Lee YH. Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys. Adv Sci 2018;5. https://doi.org/10.1002/advs.201800115.

[3]

So KP, Jeong JC, Park JG, Park HK, Choi YH, Noh DH, Keum DH, Jeong HY, Biswas C, Hong CH, Lee YH. SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol 2013;74: 6-13. https://doi.org/10.1016/j.compscitech.2012.09.014.

[4]

Fu KK, Gong Y, Fu Z, Xie H, Yao Y, Liu B, Carter M, Wachsman E, Hu L. Transient behavior of the metal interface in lithium metalegarnet batteries. Angew Chem Int Ed 2017;56: 14942-7. https://doi.org/10.1002/anie.201708637.

[5]

Feng W, Dong X, Li P, Wang Y, Xia Y. Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer. J Power Sources 2019;419: 91-8. https://doi.org/10.1016/j.jpowsour.2019.02.066.

[6]

Tsai CL, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 2016;8: 10617-26. https://doi.org/10.1021/acsami.6b00831.

[7]

Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y, Wachsman ED, Hu L. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc 2016;138: 12258-62. https://doi.org/10.1021/jacs.6b06777.

[8]

Fu KK, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Toward garnet electrolyteebased Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 2017;3: 1-12. https://doi.org/10.1126/sciadv.1601659.

[9]

Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu KK, Pastel G, Lin CF, Mo Y, Wachsman ED, Hu L. Reducing interfacial resistance between garnetstructured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 2017;29: 1-7. https://doi.org/10.1002/adma.201606042.

[10]

He M, Cui Z, Chen C, Li Y, Guo X. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J Mater Chem A 2018;6: 11463-70. https://doi.org/10.1039/c8ta02276c.

[11]

Rhee SK. Wetting of ceramics by liquid metals. J Am Ceram Soc 1971;54: 332-4. https://doi.org/10.1111/j.1151-2916.1971.tb12307.x.

[12]

Chen J, Gu M, Pan F. Reactive wetting of a metal/ceramic system. J Mater Res 2002;17: 911-7. https://doi.org/10.1557/JMR.2002.0133.

[13]

Lin Q, Cao R. Characteristics of spreading dynamics for adsorption wetting at high temperatures. Comput Mater Sci 2015;99: 29-32. https://doi.org/10.1016/j.commatsci.2014.11.052.

[14]

Kalogeropoulou S, Rado C, Eustathopoulos N. Mechanisms of reactive wetting: the wetting to non-wetting case. Scripta Mater 1999;41: 723-8. https://doi.org/10.1016/S1359-6462(99)00207-9.

[15]

Saiz E, Cannon RM, Tomsia AP. High-temperature wetting and the work of adhesion in metal/oxide systems. Annu Rev Mater Res 2008;38: 197-226. https://doi.org/10.1146/annurev.matsci.38.060407.132443.

[16]

Yasinskaya GA. The wetting of refractory carbides. borides, and nitrides by molten metals 1966;7: 557-9.

[17]

Saiz E, Cannon RM, Tomsia AP. Reactive spreading: adsorption, ridging and compound formation. Acta Mater 2000;48: 4449-62. https://doi.org/10.1016/S1359-6454(00)00231-7.

[18]

Eustathopoulos N. Progress in understanding and modeling reactive wetting of metals on ceramics. Curr Opin Solid State Mater Sci 2005;9: 152-60. https://doi.org/10.1016/j.cossms.2006.04.004.

[19]

Oh S, Cornie JA, Russell KC. Wetting of ceramic particulates with liquid aluminum alloys: Part II. Study of wettability. Metall. Trans. A. 1989;20A: 533-41. https://doi.org/10.1007/BF02653933.

[20]

Lin Q, Shen P, Yang L, Jin S, Jiang Q. Wetting of TiC by molten Al at 1123-1323 K. Acta Mater 2011;59: 1898-911. https://doi.org/10.1016/j.actamat.2010.11.055.

[21]

Kapilashrami E, Jakobsson A, Lahiri AK, Seetharaman S. Studies of the wetting characteristics of liquid iron on dense alumina by the X-ray sessile drop technique. Metall Mater Trans B Process Metall Mater Process Sci 2003;34: 193-9. https://doi.org/10.1007/s11663-003-0006-0.

[22]

V Dudiy S, Hartford J, Lundqvist BI. Nature of metal-ceramic adhesion: computational experiments with Co on TiC. Phys Rev Lett 2000;85: 1898-901. https://doi.org/10.1103/PhysRevLett.85.1898.

[23]

Schmidt J, Marques MRG, Botti S, Marques MAL. Recent advances and applications of machine learning in solid-state materials science. Npj Comput. Mater. 2019;5. https://doi.org/10.1038/s41524-019-0221-0.

[24]

Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 2018;120: 145301. https://doi.org/10.1103/PhysRevLett.120.145301.

[25]

Schütt KT, Glawe H, Brockherde F, Sanna A, Müller KR, Gross EKU. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys Rev B Condens Matter 2014;89: 1-5. https://doi.org/10.1103/PhysRevB.89.205118.

[26]

Stanev V, Oses C, Kusne AG, Rodriguez E, Paglione J, Curtarolo S, Takeuchi I. Machine learning modeling of superconducting critical temperature. Npj Comput. Mater. 2018;4. https://doi.org/10.1038/s41524-018-0085-8.

[27]

Zhan T, Fang L, Xu Y. Prediction of thermal boundary resistance by the machine learning method. Sci Rep 2017;7: 1-2. https://doi.org/10.1038/s41598-017-07150-7.

[28]

Bahrami A, Pech-Canul MI, Gutiérrez CA, Soltani N. Wetting and reaction characteristics of crystalline and amorphous SiO 2 derived rice-husk ash and SiO 2/SiC substrates with Al-Si-Mg alloys. Appl Surf Sci 2015;357: 1104-13. https://doi.org/10.1016/j.apsusc.2015.09.137.

[29]

Armstrong WM, Chaklader ACD, De Cleene MLA. Interface reactions between metals and ceramics: II, refractory metals-fused SiO2 system. J Am Ceram Soc 1961;98.

[30]

Xin C, Yan J, Xin C, Wang Q, Feng W, Wang H. Effects of Ti content on the wetting behavior and chemical reaction in AgCuTi/SiO2 system. Vacuum 2019;167: 152-8. https://doi.org/10.1016/j.vacuum.2019.05.014.

[31]

Mcevoy AJ, Williams RH, Higginbotham IG. Metal/non-metal interfaces. The wetting of magnesium oxide by aluminium and other metals. J Mater Sci 1976;11: 297-302. https://doi.org/10.1007/BF00551441.

[32]

Zhou L, Li J, Wang W, Sohn I. Wetting behavior of mold flux droplet on steel substrate with or without interfacial reaction. Metall Mater Trans B Process Metall Mater Process Sci 2017;48: 1943-50. https://doi.org/10.1007/s11663-017-0972-2.

[33]

Zhang ZT, Matsushita T, Li WC, Seetharaman S. Investigation of wetting characteristics of liquid iron on dense MgAlON-based ceramics by X-ray sessile drop technique. Metall Mater Trans B Process Metall Mater Process Sci 2006;37: 421-9. https://doi.org/10.1007/s11663-006-0027-6.

[34]

De Wilde E, Bellemans I, Campforts M, Khaliq A, Vanmeensel K, Seveno D, Guo M, Rhamdhani A, Brooks G, Blanpain B, Moelans N, Verbeken K. Wetting behaviour of Cu based alloys on spinel substrates in pyrometallurgical context. Mater Sci Technol (United Kingdom)2015;31: 1925-33. https://doi.org/10.1179/1743284715Y.0000000052.

[35]

Shin M, Lee J, Park JH. Wetting characteristics of liquid Fe-19% Cr-10% Ni alloys on dense alumina substrates. ISIJ Int 2008;48: 1665-9. https://doi.org/10.2355/isijinternational.48.1665.

[36]

Parry G, Ostrovski O. Wetting of solid iron, nickel and platinum by liquid MnO-SiO2 and CaO-AI2O3-SiO2. ISIJ Int 2009;49: 788-95. https://doi.org/10.2355/isijinternational.49.788.

[37]

Oh JS, Lee J. Composition-dependent reactive wetting of molten slag on coke substrates. J Mater Sci 2016;51: 1813-9. https://doi.org/10.1007/s10853-015-9588-6.

[38]

Tsoga A, Naoumidis A, Nikolopoulos P. Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti-TiO2/YSZ. Acta Mater 1996;44: 3679-92. https://doi.org/10.1016/1359-6454(96)00019-5.

[39]

Ni N, Kaufmann Y, Kaplan WD, Saiz E. Interfacial energies and mass transport in the Ni (Al)-Al2O 3 system: the implication of very low oxygen activities. Acta Mater 2014;64: 282-96. https://doi.org/10.1016/j.actamat.2013.10.041.

[40]

Kapilashrami E, Seetharaman S. Wetting characteristics of oxygen-containing iron. J Mater Sci 2005;40: 2371-5.

[41]

Wang M, Ge M, Cheng F, Yu Z, Tang Y. The effect of a small amount of oxide additives on the wetting behavior of glass on metal. J Non Cryst Solids 1986;80: 379-86.

[42]

Humenik M, Kingery WD. Metal-ceramic interactions: III, surface tension and wetta bility of metal-ceramic systems. J Am Ceram Soc 1954;37: 18-23.

[43]

Gupta M, Ibrahim IA, Mohamed FA, Lavernia EJ. Wetting and interfacial reactions in Al-Li-SiCp metal matrix composites processed by spray atomization and deposition. J Mater Sci 1991;26: 6673-84. https://doi.org/10.1007/BF02402660.

[44]

Barzilai S, Froumin N, Glickman E, Fuks D, Frage N. Wetting of calcium fluoride by liquid metals. J Mater Sci 2012;47: 8404-18. https://doi.org/10.1007/s10853-012-6680-z.

[45]

Barzilai S, Lomberg M, Aizenshtein M, Froumin N, Frage N. The effect of thermodynamic properties of Me-Ti (Me ¼ In, Sn, Ga, Au, and Ge) melts on the wetting of the CaF2 substrate. J Mater Sci 2010;45: 2085-9. https://doi.org/10.1007/s10853-009-4018-2.

[46]

Barzilai S, Argaman N, Froumin N, Fuks D, Frage N. First-principles modeling of metal layer adsorption on CaF2(1 1 1). Surf Sci 2008;602: 1517-24. https://doi.org/10.1016/j.susc.2008.02.022.

[47]

Barzilai S, Argaman N, Froumin N, Fuks D, Frage N. The effect of Ti on the wetting of CaF2 substrate by In-Ti and Ga-Ti alloys. Ab-initio consideration. Appl Phys A Mater Sci Process 2008;93: 379-85. https://doi.org/10.1007/s00339-008-4809-3.

[48]

Barzilai S, Aizenshtein M, Lomberg M, Froumin N, Frage N. Interface reaction and wetting in the CaF2/Me systems. J Alloys Compd 2008;452: 154-60. https://doi.org/10.1016/j.jallcom.2006.11.213.

[49]

Avraham S, Kaplan WD. Reactive wetting of rutile by liquid aluminium. J Mater Sci 2005;40: 1093-100. https://doi.org/10.1007/s10853-005-6922-4.

[50]

Yolshina LA, Kvashinchev AG. Chemical interaction of liquid aluminum with metal oxides in molten salts. Mater Des 2016;105: 124-32. https://doi.org/10.1016/j.matdes.2016.05.012.

[51]
Ivanovskaya M. September 14-18, 2009 Warsaw, Poland. In: Skorokhod V, editor; 2016.
[52]

Sobczak N, Singh M, Asthana R. High-temperature wettability measurements in metal/ceramic systems-some methodological issues. Curr Opin Solid State Mater Sci 2005;9: 241-53. https://doi.org/10.1016/j.cossms.2006.07.007.

[53]

Schaub R, Wahlstro E, Rønnau A, Lægsgaard E, Stensgaard I, Besenbacher F. Oxygen-mediated diffusion of TiO 2(110) surface. Science 2003;299(80): 2001-3.

[54]

Pasquali L, Doyle BP, Borgatti F, Giglia A, Mahne N, Pedio M, Nannarone S, Kaveev AK, Balanev AS, Krichevtsov BB, Suturin SM, Sokolov NS. Cobalt on calcium fluoride: initial stages of growth and magnetic properties. Surf Sci 2006;600: 4170-5. https://doi.org/10.1016/j.susc.2006.01.141.

[55]

Naidich YV. Wettability of halides with molten metals. Physico-chemical and practical aspects. Powder Metall. Met. Ceram. 2000;39: 355-62. https://doi.org/10.1023/a:1026661422569.

[56]

Krasovskyy VP. Interaction of single-crystalline metal fluorides with titaniumcontaining melts. Powder Metall. Met. Ceram. 2019;58: 334-40. https://doi.org/10.1007/s11106-019-00083-y.

[57]

Krasovskyy V. Contact interaction and wetting of strontium fluoride by metal melts. J Adhes Sci Technol 2012;26: 1221-31. https://doi.org/10.1163/156856111X593568.

[58]

Koshy P, Gupta S, Sahajwalla V, Edwards P. Effect of CaF2 on interfacial phenomena of high alumina refractories with Al alloy. Metall Mater Trans B Process Metall Mater Process Sci 2008;39: 603-12. https://doi.org/10.1007/s11663-008-9169-z.

[59]

Ibarra MN, Almanza JM, Cortés DA, Escobedo JC, Pech M, Martinez R. Effect of the addition of alkaline earth sulfates to mullite ceramics on the corrosion and wetting by Al-Mg alloy. J Eur Ceram Soc 2015;35: 2189-94. https://doi.org/10.1016/j.jeurceramsoc.2015.01.025.

[60]

Shen P, Fujii H, Nogi K. Wetting, adhesion and diffusion in Cu-Al/SiO2 system at 1473 K. Scripta Mater 2005;52: 1259-63. https://doi.org/10.1016/j.scriptamat.2005.02.019.

[61]

Glickman E, Fuks D, Frage N, Barzilai S, Froumin N. Adsorption effect in nonreaction wetting: in-Ti on CaF 2. Appl Phys A Mater Sci Process 2012;106: 181-9. https://doi.org/10.1007/s00339-011-6546-2.

[62]

Geng WT, Ohno T. Li2O2 wetting on the (110) surface of RuO2, TiO2, and SnO2: an initiating force for polycrystalline growth. J Phys Chem C 2015;119: 1024-31. https://doi.org/10.1021/jp508896s.

[63]

Froumin N, Barzilai S, Aizenshtein M, Lomberg M, Frage N. Wetting induced by near-surface Ti-enrichment in the CaF2/In-Ti and CaF2/Cu-Ti systems. Mater Sci Eng 2008;495: 181-6. https://doi.org/10.1016/j.msea.2007.10.103.

[64]

Fath A, Sacher F, McCaskie JE. Electrochemical decomposition of fluorinated wetting agents in plating industry waste water. Water Sci Technol 2016;73: 1659-66. https://doi.org/10.2166/wst.2015.650.

[65]

Durov OV, Krasovskyy VP. In situ observation of Ag-Cu-Ti liquid alloy/solid oxide interfaces. Mater Sci Eng 2008;495: 164-7. https://doi.org/10.1016/j.msea.2007.10.098.

[66]
Calleja F, Hinarejos JJ, Suturin S, De Parga ALV, Sokolov NS. Initial stages of the growth of CaF 2 on Cu (111) visualized by STM. 2004. p. 2-3.
[67]

Calleja F, Hinarejos JJ, Vázquez De Parga AL, Suturin SM, Sokolov NS, Miranda R. Epitaxial growth of CaF2(1 1 1) on Cu (1 1 1) visualized by STM. Surf Sci 2005;582: 14-20. https://doi.org/10.1016/j.susc.2005.03.003.

[68]

Barzilai S, Argaman N, Froumin N, Fuks D, Frage N. The effect of Me-Ti interatomic interactions on wetting in CaF2/(Me-Ti) systems: ab-initio considerations. Surf Sci 2009;603: 2096-101. https://doi.org/10.1016/j.susc.2009.04.006.

[69]

Balachandran PV, Theiler J, Rondinelli JM, Lookman T. Materials prediction via classification learning. Sci Rep 2015;5: 1-16. https://doi.org/10.1038/srep13285.

[70]

Shen P, Fujii H, Matsumoto T, Nogi K. Reactive wetting of SiO2 substrates by molten Al. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004;35 A: 583-8. https://doi.org/10.1007/s11661-004-0369-0.

[71]

Naidich YV, Chubashov YN, Ishchuk NF, Krasovskii VP. Wetting of some nonmetallic materials by aluminum. Sov Powder Metall Met Ceram 1983;22: 481-3. https://doi.org/10.1007/BF00793227.

[72]

Liu T, Kim CJ. Turning a surface superrepellent even to completely wetting liquids. Science 2014;346: 1096-100. https://doi.org/10.1126/science.1254787.

[73]

Kapilashrami E, Sahajwalla V, Seetharaman S. Investigation of the wetting characteristics of liquid iron on mullite by sessile drop technique. ISIJ Int 2004;44: 653-9. https://doi.org/10.2355/isijinternational.44.653.

[74]

Harding FL, Rossington DR. Wetting of ceramic oxides by molten metals under ultrahigh vacuum. J Am Ceram Soc 1970;53: 87-90. https://doi.org/10.1111/j.1151-2916.1970.tb12016.x.

[75]

Muolo ML, Valenza F, Passerone A, Passerone D. Oxygen influence on ceramics wettability by liquid metals: Ag/α-Al2O3-Experiments and modelling. Mater Sci Eng 2008;495: 153-8. https://doi.org/10.1016/j.msea.2007.06.101.

[76]

Ward L, Dunn A, Faghaninia A, Zimmermann NER, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson KA, Snyder GJ, Foster I, Jain A, Matminer. An open source toolkit for materials data mining. Comput Mater Sci 2018;152: 60-9. https://doi.org/10.1016/j.commatsci.2018.05.018.

[77]

Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput. Mater. 2016;2: 1-7. https://doi.org/10.1038/npjcompumats.2016.28.

[78]

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12: 2825-30.

[79]

Allouche A. Software news and updates gabedit d a graphical user interface for computational chemistry softwares. J Comput Chem 2012;32: 174-82. https://doi.org/10.1002/jcc.

[80]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44: 1272-6.

[81]

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simulat Mater Sci Eng 2010;18. https://doi.org/10.1088/0965-0393/18/1/015012.

[82]

Dudiy SV, Lundqvist BI. Wetting of TiC and TiN by metals. Phys Rev B Condens Matter 2004;69(12): 125421. https://doi.org/10.1103/PhysRevB.69.125421.

[83]

Rose F, Toher C, Gossett E, Oses C, Nardelli MB, Fornari M, Curtarolo S. AFLUX: the LUX materials search API for the AFLOW data repositories. Comput Mater Sci 2017;137: 362-70. https://doi.org/10.1016/j.commatsci.2017.04.036.

[84]

Wang Z, Li X, Chen Y, Pei K, Mai YW, Zhang S, Li J. Creep-enabled 3D solidstate lithium-metal battery. Inside Chem 2020: 1-15. https://doi.org/10.1016/j.chempr.2020.09.005.

[85]
Pei K., Kim S.Y., Li J., Electrochemically stable lithium-ion and electron insulators (LEIs) for solid-state batteries, Nano Res, Under Review.
[86]

Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. The Materials Project: a materials genome approach to accelerating materials innovation. Apl Mater 2013;1: 11002.

[87]

Duan J, Zheng Y, Luo W, Wu W, Wang T, Xie Y, Li S, Li J, Huang Y. Is graphite lithiophobic or lithiophilic?Natl. Sci. Rev. 2020;7:1208-17. https://doi.org/10.1093/nsr/nwz222.

[88]

Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem 1936;28:988-94. https://doi.org/10.1017/cbo9781316146743.

[89]

Zhu L, Feng Y, Ye X, Zhou Z. Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures. Sensors Actuators, A Phys. 2006:595-600. https://doi.org/10.1016/j.sna.2005.12.005. 130-131.

[90]

Passerone A, Muolo ML, Passerone D. Wetting of Group IV diborides by liquid metals. J Mater Sci 2006;41:5088-98. https://doi.org/10.1007/s10853-006-0442-8

Journal of Materiomics
Pages 195-203
Cite this article:
Kim SY, Li J. Machine learning of metal-ceramic wettability. Journal of Materiomics, 2022, 8(1): 195-203. https://doi.org/10.1016/j.jmat.2021.03.014

295

Views

4

Crossref

11

Web of Science

10

Scopus

Altmetrics

Received: 12 February 2021
Revised: 18 March 2021
Accepted: 22 March 2021
Published: 31 March 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return