AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Realizing ranged performance in SnTe through integrating bands convergence and DOS distortion

Huimei PangaXiuxiu ZhangaDongyang WangaRong HuangbZhenzhong YangbXiao Zhanga( )Yuting Qiuc( )Li-Dong Zhaoa( )
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200062, China
Beihang School, Beihang University, Beijing, 100191, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

As a typical IV-VI compound, SnTe has aroused widely attentions in the thermoelectric community due its similar crystal and band structures with PbTe. However, both the large number of inherent Sn vacancies and high thermal conductivity result in inferior thermoelectric performance in intrinsic SnTe over a broad temperature. In this work, we successfully improved those disadvantages of SnTe via stepwisely Pb heavily alloying and then In doping. A significantly wide fraction of Pb into SnTe (0–50%) achieves multiple effects: (a) the carrier concentration of SnTe is reduced through decreasing Sn vacancies via alloying high solution Pb atoms in the matrix; (b) the band structure is optimized through promoting the convergence of the two valence bands, simultaneously enhancing the Seebeck coefficient; (c) HAADF-STEM coupled with EDS results illustrate that guest Pb atoms randomly and uniformly occupied Sn atomic sites in the matrix, concurrently strengthening the phonon scattering. Furthermore, we introduced indium into Sn0.6Pb0.4Te system to create resonant states further enlarging the power factors at low-medium temperature. The integration of bands convergence and DOS distortion achieves a considerably high ZTave of ~0.67 over the wide temperature range of 300–823 K in (Sn0.6Pb0.4)0.995In0.005Te sample.

References

[1]

Zhang X, Zhao L-D. Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics 2015;1(2): 92-105.

[2]

Pei J, Cai B, Zhuang H-L, Li J-F. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review 2020;7(12): 1856-8.

[3]

Zhao L-D, Dravid VP, Kanatzidis MG. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci 2014;7(1): 251-68.

[4]

Zhou Y, Zhao L-D. Promising thermoelectric bulk materials with 2D structures. Adv Mater 2017;29(45). 1702676.

[5]

Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014;508(7496): 373-7.

[6]

Chang C, Zhao L-D. Anharmoncity and low thermal conductivity in thermoelectrics. Materials Today Physics 2018;4: 50-7.

[7]

Zhang Q, Song Q, Wang X, Sun J, Zhu Q, Dahal K, Lin X, Cao F, Zhou J, Chen S, Chen G, Mao J, Ren Z. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy Environ Sci 2018;11(4): 933-40.

[8]

Zhao LD, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J, Kanatzidis MG. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc 2016;138(7): 2366-73.

[9]

Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder GJ, Zhao X. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Advanced Energy Materials 2013;3(9): 1238-44.

[10]

Xiao Y, Wu H, Cui J, Wang D, Fu L, Zhang Y, Chen Y, He J, Pennycook SJ, Zhao LD. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ Sci 2018;11(9): 2486-95.

[11]

Wu D, Pei Y, Wang Z, Wu H, Huang L, Zhao L-D, He J. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites. Adv Funct Mater 2014;24(48): 7763-71.

[12]

Tan G, Zhao L-D, Shi F, Doak JW, Lo S-H, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc 2014;136(19): 7006-17.

[13]

Zhao L-D, He J, Wu C-I, Hogan TP, Zhou X, Uher C, Dravid VP, Kanatzidis MG. Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. J Am Chem Soc 2012;134(18): 7902-12.

[14]

Wu D, Wu L, He D, Zhao L-D, Li W, Wu M, Jin M, Xu J, Jiang J, Huang L, Zhu Y, Kanatzidis MG, He J. Direct observation of vast off-stoichiometric defects in single crystalline SnSe. Nanomater Energy 2017;35: 321-30.

[15]

Sales BC, Mandrus D, Williams RK. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 1996;272(5266): 1325-8.

[16]

Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015;348(6230): 109-14.

[17]

Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y. Lattice strain advances thermoelectrics. Joule 2019;3(5): 1276-88.

[18]

Lin S, Li W, Li S, Zhang X, Chen Z, Xu Y, Chen Y, Pei Y. High Thermoelectric Performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule 2017;1(4): 816-30.

[19]

Wang D, Huang Z, Zhang Y, Hao L, Wang G, Deng S, Wang H, Chen J, He L, Xiao B, Xu Y, Pennycook SJ, Wu H, Zhao L-D. Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. Science China Materials 2020;63(9): 1759-68.

[20]

Kleinke H. New bulk materials for thermoelectric power generation: clathrates and complex antimonides. Chem Mater 2010;22(3): 604-11.

[21]

Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G, Wu H, Chen Y, Zheng L, Gong S, Zhu T, Zhao X, Huang L, He J, Kanatzidis MG, Zhao L-D. Multiple Converged Conduction Bands in K2Bi8Se13: a promising thermoelectric material with extremely low thermal conductivity. J Am Chem Soc 2016;138(50): 16364-71.

[22]

Li B, Wang H, Kawakita Y, Zhang Q, Feygenson M, Yu HL, Wu D, Ohara K, Kikuchi T, Shibata K, Yamada T, Ning XK, Chen Y, He JQ, Vaknin D, Wu RQ, Nakajima K, Kanatzidis MG. Liquid-like thermal conduction in intercalated layered crystalline solids. Nat Mater 2018;17(3): 226-30.

[23]

Fu T, Yue X, Wu H, Fu C, Zhu T, Liu X, Hu L, Ying P, He J, Zhao X. Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT > 2 by multi-functional alloying. Journal of Materiomics 2016;2(2): 141-9.

[24]

Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun 2015;6(1): 8144.

[25]

Lin S, Li W, Chen Z, Shen J, Ge B, Pei Y. Tellurium as a high-performance elemental thermoelectric. Nat Commun 2016;7(1). 10287.

[26]

Wu H, Zhao L-D, Zheng F, Wu D, Pei Y, Tong X, Kanatzidis M, He J. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phaseseparated PbTe0.7S0.3. Nat Commun 2014;5(1): 4515.

[27]

Qin B, Wang D, He W, Zhang Y, Wu H, Pennycook SJ, Zhao L-D. Realizing High Thermoelectric performance in p-type SnSe through crystal structure modification. J Am Chem Soc 2019;141(2): 1141-9.

[28]

Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis MG, Tang X. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J Am Chem Soc 2018;140(7): 2673-86.

[29]

Tan G, Shi F, Hao S, Zhao L-D, Chi H, Zhang X, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. Nat Commun 2016;7(1). 12167.

[30]

Xiao Y, Zhao L-D. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Materials 2018;3(1): 55.

[31]

Mašek J, Nuzhnyj D. Changes of electronic structure of SnTe due to high concentration of Sn vacancies. Proc. Natl. Acad. Sci. U.S. A 1997;92(5): 915-8.

[32]

Brebrick RF, Strauss AJ. Anomalous thermoelectric power as evidence for twovalence bands in SnTe. Phys Rev 1963;131(1): 104-10.

[33]

Tan G, Shi F, Doak JW, Sun H, Zhao L-D, Wang P, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci 2015;8(1): 267-77.

[34]

Hong M, Wang Y, Xu S, Shi X, Chen L, Zou J, Chen Z-G. Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nanomater Energy 2019;60: 1-7.

[35]

Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis MG, Zhao L-D. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy Environ Sci 2015;8(11): 3298-312.

[36]

Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook SJ, Cai W, Sui J. Simultaneous boost of power factor and figure-of-merit in IneCu codoped SnTe. Small 2019;15(36). 1902493.

[37]

Zhang X, Wang D, Wu H, Yin M, Pei Y, Gong S, Huang L, Pennycook SJ, He J, Zhao L-D. Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy Environ Sci 2017;10(11): 2420-31.

[38]

Al Rahal Al Orabi R, Mecholsky NA, Hwang J, Kim W, Rhyee J-S, Wee D, Fornari M. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTeeCaTe Alloys. Chem Mater 2016;28(1): 376-84.

[39]

Banik A, Shenoy US, Anand S, Waghmare UV, Biswas K. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem Mater 2015;27(2): 581-7.

[40]

Qin B-C, Xiao Y, Zhou Y-M, Zhao L-D. Thermoelectric transport properties of PbeSneTeeSe system. Rare Met 2018;37(4): 343-50.

[41]

Dimmock JO, Melngailis I, Strauss AJ. Band structure and laser action in PbxSn1-xTe. Phys Rev Lett 1966;16(26): 1193-6.

[42]

Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc. Natl. Acad. Sci. U.S. A 2013;110(33): 13261-6.

[43]

Liu W, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Advanced Energy Materials 2011;1(4): 577-87.

[44]

Zhao L-D, Wu H, Hao S, Wu CI, Zhou X, Biswas K, He J, Hogan TP, Uher C, Wolverton CM. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci 2013;6(11): 3346-55.

[45]
Ravich IUI, Ravič JI, Efimova BA, Smirnov IA, Stil'bans LS. Semiconducting lead chalcogenides. Plenum Press; 1970.
[46]

Kim H-S, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coefficient measurement. Apl Mater 2015;3(4). 041506.

[47]

Xiao Y, Wang D, Zhang Y, Chen C, Zhang S, Wang K, Wang G, Pennycook SJ, Snyder GJ, Wu H. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. J Am Chem Soc 2020;142(8): 4051-60.

[48]

Zhou Y, Wu H, Pei Y, Chang C, Xiao Y, Zhang X, Gong S, He J, Zhao L-D. Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2. Acta Mater 2017;125: 542-9.

[49]

Wang D, Qin Y, Wang S, Qiu Y, Ren D, Xiao Y, Zhao L-D. Synergistically enhancing thermoelectric performance of n-type PbTe with indium doping and sulfur alloying. Ann Phys 2019;532(11). 1900421.

[50]

Wan C, Pan W, Xu Q, Qin YX, Wang JD, Qu ZX, Fang MH. Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: experiment and theoretical model. Phys Rev B 2006;74(14). 144109.

[51]

Tan XJ, Liu GQ, Xu JT, Shao HZ, Jiang J, Jiang HC. Element-selective resonant state in M-doped SnTe (M = Ga, In, and Tl). Phys Chem Chem Phys 2016;18(30): 20635-9.

[52]

Tan G, Shi F, Hao S, Chi H, Bailey TP, Zhao L-D, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J Am Chem Soc 2015;137(35): 11507-16.

[53]

Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare UV, Biswas K. Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe. Energy Environ Sci 2019;12(2): 589-95.

[54]

Tan G, Shi F, Hao S, Chi H, Zhao L-D, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J Am Chem Soc 2015;137(15): 5100-12.

[55]

Chasmar RP, Stratton R. The thermoelectric figure of merit and its relation to thermoelectric generators. Int J Electron 1959;7(1): 52-72.

[56]

Tan G, Zhao L-D, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev 2016;116(19): 12123-49.

[57]

Lu W, He T, Li S, Zuo X, Zheng Y, Lou X, Zhang J, Li D, Liu J, Tang G. Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared via a green and facile hydrothermal method. Nanoscale 2020;12(10): 5857-65.

[58]

Zhang LJ, Qin P, Han C, Wang JL, Ge ZH, Sun Q, Cheng ZX, Li Z, Dou SX. Enhanced thermoelectric performance through synergy of resonance levels and valence band convergence via Q/In (Q = Mg, Ag, Bi) co-doping. J Mater Chem 2018;6(6): 2507-16.

[59]

Wang L, Tan X, Liu G, Xu J, Shao H, Yu B, Jiang H, Yue S, Jiang J. Manipulating band convergence and resonant state in thermoelectric material SnTe by MneIn codoping. ACS Energy Letters 2017;2(5): 1203-7.

[60]

Qi X, Huang Y, Wu D, Jiang B, Zhu B, Xu X, Feng J, Jia B, Shu Z, He J. Eutectoid nano-precipitates inducing remarkably enhanced thermoelectric performance in (Sn1-xCdxTe)1-y (Cu2Te)y. J Mater Chem 2020;8(5): 2798-808.

Journal of Materiomics
Pages 184-194
Cite this article:
Pang H, Zhang X, Wang D, et al. Realizing ranged performance in SnTe through integrating bands convergence and DOS distortion. Journal of Materiomics, 2022, 8(1): 184-194. https://doi.org/10.1016/j.jmat.2021.03.015

382

Views

18

Crossref

19

Web of Science

19

Scopus

Altmetrics

Received: 05 February 2021
Revised: 11 March 2021
Accepted: 23 March 2021
Published: 03 April 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return