AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Regulating energy storage performances of 0.85NaNbO3-0.15Bi(Zn2/3Nb1/3)O3 ceramics using BaTiO3

Dongyu LaiaZhonghua Yaoa ( )Wei YouaBiao GaoaQinghu GuoaPing LuaAmjad UllahaHua HaoaMinghe CaoaHanxing Liua,b
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Recently, NaNbO3-based ceramics with excellent energy storage performances (ESPs) and fast charge-discharge characteristics have attracted great attention. In this case, BaTiO3 modified 0.85NaNbO3-0.15Bi(Zn2/3Nb1/3)O3 (0.85NN-0.15BZN-yBT) ceramics were designed and successfully fabricated using solid state synthesis. The discharge storage density of the ceramics increases from 1.22 J/cm3 at y = 0–1.84 J/cm3 at y = 8%, which is 1.5 times higher than pure 0.85NN-0.15BZN ceramics. This ceramic reveals excellent temperature stability up to 150 ℃, good discharge cycling after 105 cycles and high discharge speed of 2.0 μs, broadening the scope of NaNbO3-based ceramics for energy storage applications.

References

[1]

M.S. Whittingham, Materials challenges facing electrical energy storage, MRS Bull, 33 (2008) 411-9.

[2]

G. Ge, K. Huang, S. Wu, F. Yan, X. Li, B. Shen, J. Zhai, Synergistic optimization of antiferroelectric ceramics with superior energy storage properties via phase structure engineering, Energy Storage Materials, 35 (2021) 114-21.

[3]

T. Kousksou, P. Bruel, A. Jamil, T. Rhafiki, Y. Zeraouli, Energy storage: applications and challenges, Sol Energy Mater Sol Cells, 120 (2014) 59-80.

[4]

X. Hao, A review on the dielectric materials for high energy-storage application, J. Adv. Dielectr, 3 (2013) 1330001.

[5]

H. Palneedi, M. Peddigari, G. Hwang, D. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook, Adv Funct Mater, 28 (2018) 1803665.

[6]

Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Homogeneous/inhomogeneous-Structured dielectrics and their energy-storage performances, Adv Mater, 29 (2017) 1601727.

[7]

J. Li, F. Li, Z. Xu, S. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency, Adv Mater, 30 (2018) 1802155.

[8]

Q. Li, F. Yao, Y. Liu, G. Zhang, H. Wang, Q. Wang, High-temperature dielectric materials for electrical energy storage, Annu Rev Mater Res, 48 (2018) 219-43.

[9]

L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications, Prog Mater Sci, 102 (2019) 72-108.

[10]

Y. Zhang, Q. Chi, L. Liu, C. Zhang, C. Chen, X. Wang, Q. Lei, Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly (vinylidene fluoride)-based dielectric film for high energy density capacitor, Apl Mater, 5 (2017) 076109.

[11]

X. Su, B.C. Riggs, M. Tomozawa, J.K. Nelson, D.B. Chrisey, Preparation of BaTiO3/low melting glass core-shell nanoparticles for energy storage capacitor applications, J Mater Chem, 2 (2014) 18087-96.

[12]

H. Cheng, J. Ouyang, Y. Zhang, D. Ascienzo, Y. Li, Y. Zhao, Y. Ren, Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films, Nat Commun, 8 (2017) 1999.

[13]

Y. Wang, Z. Shen, Y. Li, Z. Wang, W. Luo, Y. Hong, Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x≤0.4) paraelectric ceramics, Ceram Int, 41 (2015) 8252-6.

[14]

L. Yang, X. Kong, Z. Cheng, S. Zhang, Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors, J Mater Chem, 7 (2019) 8573-80.

[15]

T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials, J Mater Chem, 5 (2017) 554-63.

[16]

Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics, J Mater Chem, 4 (2016) 13778-85.

[17]

H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains, Adv Funct Mater, 29 (2019) 1903877.

[18]

F. Yan, X. Zhou, X. He, H. Bai, S. Wu, B. Shen, J. Zhai, Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy, Nano Energy, 75 (2020) 105012.

[19]

F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, Bo Shen, J. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering, Energy Storage Materials, 30 (2020) 392-400.

[20]

Li Z, Liu H, Yao Z, Xie J, Li X, Diao C, Ullah A, Hao H, Cao M. Ceram Int 2019;45: 22523-7

[21]

Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L, Lin Y, Nan C. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365: 578-82

[22]

Zhou M, Liang R, Zhou Z, Dong X. Achieving ultrahigh energy storage density and energy efficiency simultaneously in sodium niobate-based lead-free dielectric capacitors via microstructure modulation. Inorg. Chem. Front 2019;6: 2148-57.

[23]

Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl Mater Interfaces 2017;9: 20484-90.

[24]

Liu Z, Lu J, Mao Y, Ren P, Fan H. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J Eur Ceram Soc 2018;38: 4939-45.

[25]

Song A, Song J, Lv Y, Liang L, Wang J, Zhao L. Energy storage performance in BiMnO3-modified AgNbO3 anti-ferroelectric ceramics. Mater Lett 2019;237:278-81.

[26]

Zhao L, Liu Q, Gao J, Zhang S, Li J. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017;29:1701824.

[27]

Yan Z, Zhang D, Zhou X, Qi H, Luo H, Zhou K, Abrahams I, Yan H. Silver niobate based lead-free ceramics with high energy storage density. J Mater Chem2019;7: 10702-11.

[28]

Lai D, Yao Z, You W, Gao B, Guo Q, Lu P, Ullah A, Hao H, Cao M, Liu H. Modulating the energy storage performance of NaNbO3-based lead-free ceramics for pulsed power capacitors. Ceram Int 2020;46: 13511-6.

[29]

Ye J, Wang G, Zhou M, Liu N, Chen X, Li S, Cao F, Dong X. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J Mater Chem C 2019;7: 5639-45.

[30]

Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J Mater Chem 2020;8: 8352-9.

[31]

Fan Y, Zhou Z, Liang R, Dong X. Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy. J Eur Ceram Soc 2019;39: 4770-7.

[32]

Peng X, Pu Y, Du X. Effect of K2O addition on glass structure, complex impedance and energy storage density of NaNbO3 based glass-ceramics. J Alloys Compd 2019;785: 350-5.

[33]

Zhou M, Liang R, Zhou Z, Yan S, Dong X. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustainable Chem Eng 2018;6:12755-65.

[34]

Zhou M, Liang R, Zhou Z, Dong X. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J Mater Chem 2018;6:17896-904.

[35]

Shi R, Pu Y, Wang W, Guo X, Li J, Yang M, Zhou S. A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. J Alloys Compd 2020;815: 152356.

[36]

Zhou M, Liang R, Zhou Z, Dong X. Developing a novel high performance NaNbO3-based lead-free dielectric capacitor for energy storage applications. Sustainable Energy Fuels 2020;4: 1225-33.

[37]
Yan F., Shi Y., Zhou X., Zhu K., Shen B., Zhai J. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. Chem Eng J. doi: 10.1016/j.cej.2020.127945.
[38]

Li W, Zhou D, Pang L. Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl Phys Lett2017;110: 132902.

[39]

Dai Z, Xie J, Liu W, Wang X, Zhang L, Zhou Z, Li J, Ren X. Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Appl Mater Interfaces 2020;12: 30289-96.

[40]

Kumar R, Singh I, Meena R, Asokan K, Birajdar B, Patnaik S. Effect of La-doping on dielectric properties and energy storage density of lead-free Ba(Ti0.95Sn0.05)O3 ceramics. Mater Res Bull 2020;123: 110694.

[41]

Jiang X, Hao H, Zhang S, Lv J, Cao M, Yao Z, Liu H.Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J Eur Ceram Soc 2019;39: 1103-9.

[42]

Dong X, Chen X, Chen H, Sun C, Shi J, Pang F, Zhou H. Simultaneously achieved high energy-storage density and efficiency in BaTiO3-Bi(Ni2/3Ta1/3)O3 lead-free relaxor ferroelectrics. J Mater Sci Mater Electron 2020;31: 22780-8.

[43]

Yuan Q, Yao F, Cheng S, Wang L, Wang Y, Mi S, Wang Q, Wang X, Wang H. Bioinspired hierarchically structured all-Inorganic nanocomposites with significantly improved capacitive performance. Adv Funct Mater 2020;30: 2000191.

[44]

Shen Z, Wang X, Luo B, Li L. BaTiO3-BiYbO3 perovskite materials for energy storage applications. J Mater Chem 2015;3: 18146-53.

[45]

Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, Xu Z, Huang Q, Liao X, Chen L, Shrout TR, Zhang S. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater 2018;17: 349-54.

[46]

Kishimoto A, Endo K, Motohira N, Nakamura Y, Yanagida H, Miyayama M. Strength distribution of titania ceramics after high-voltage screening. J Mater Sci 1996;31: 3419-25.

[47]

Yang H, Yan F, Lin Y, Wang T. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J Eur Ceram Soc 2018;38: 1367-73.

[48]

Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S. Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J. Materiomics 2019;5:385-93.

[49]

Dang Z, Yuan J, Yao S, Liao R. Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 2013;25: 6334-65.

[50]

Xu Q, Liu H, Zhang L, Xie J, Hao H, Cao M, Yao Z, Lanagan M. Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energystorage applications. RSC Adv 2016;6: 59280-91.

[51]

Xu R, Li B, Tian J, Xu Z, Feng Y, Wei X, Huang D, Yang L. Pb0.94La0.04[(Zr0.70Sn0.30)0.90Ti0.10]O3 antiferroelectric bulk ceramics for pulsed capacitors with high energy and power density. Appl Phys Lett 2017;110:142904.

[52]

Qiu Y, Lin Y, Liu X, Yang H. Bi(Mg2/3Nb1/3)O3 addition inducing high recoverable energy storage density in lead-free 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 bulk ceramics. J Alloys Compd 2019;797:348-55.

[53]

Hu Q, Jin L, Wang T, Li C, Xing Z, Wei X. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J Alloys Compd 2015;640: 416-20.

[54]

Liu G, Li Y, Shi M, Yu L, Chen P, Yu K, Yan Y, Jin L, Wang D, Guo J. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram Int 2019;45: 19189-96.

[55]

Zhang Y, Cao M, Yao Z, Wang Z, Song Z, Ullah A, Hao H, Liu H. Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Mater Res Bull 2015;67: 70-6.

[56]

Li D, Shen Z, Li Z, Luo W, Song F, Wang X, Wang Z, Li Y. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors. J Mater Chem C 2020;8: 7650-7.

Journal of Materiomics
Pages 166-173
Cite this article:
Lai D, Yao Z, You W, et al. Regulating energy storage performances of 0.85NaNbO3-0.15Bi(Zn2/3Nb1/3)O3 ceramics using BaTiO3. Journal of Materiomics, 2022, 8(1): 166-173. https://doi.org/10.1016/j.jmat.2021.04.001

311

Views

13

Crossref

15

Web of Science

17

Scopus

Altmetrics

Received: 22 January 2021
Revised: 15 March 2021
Accepted: 01 April 2021
Published: 06 April 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return