AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Ultraslow electron-phonon scattering and polaron formation in magnetite

Adrian Radońa,b,1( )Dariusz ŁukowiecbPatryk Włodarczyka,1
Łukasiewicz Research Network – Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland
Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland

1 These authors contributed equally to this work.]]>

Show Author Information

Graphical Abstract

Abstract

The comprehensive analysis of AC electrical conductivity in magnetite was performed in order to find relations between the formation of polarons, phonons and conduction by a virtual free electron gas. The analysis performed here for the first time shows experimental data for the behavior of electrons for magnetite with the scattering time shifted to the GHz region. According to our study, the DC electrical conductivity can be described by the virtual free electron gas model, and high frequency conductivity can be described by the combination of the Drude model for disordered materials and Jonscher's universal power law. The observed peak at the imaginary part of AC conductivity was related to the scattering time of the electron-phonon coupling. This interaction between electrons and thermally formed phonons results in the formation of large polarons, and these are responsible for high frequency conductivity in magnetite.

References

[1]

Baldini E, Belvin CA, Rodriguez-Vega M, Ozel IO, Legut D, Kozłowski A, et al. Discovery of the soft electronic modes of the trimeron order in magnetite. Nat Phys 2020. https://doi.org/10.1038/s41567-020-0823-y.

[2]

Yuan K, Lee SS, Cha W, Ulvestad A, Kim H, Abdilla B, et al. Oxidation induced strain and defects in magnetite crystals. Nat Commun 2019. https://doi.org/10.1038/s41467-019-08470-0.

[3]

Sahling S, Lorenzo JE, Remenyi G, Marin C, Katkov VL, Osipov VA. Heat capacity signature of frustrated trimerons in magnetite. Sci Rep 2020. https://doi.org/10.1038/s41598-020-67955-x.

[4]

Radoń A, Łukowiec D, Kremzer M, Mikuła J, Włodarczyk P. Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 2018. https://doi.org/10.3390/ma11050735.

[5]

Jonscher AK. The “universal” dielectric response. Nature 1977. https://doi.org/10.1038/267673a0.

[6]

Radoń A, Hawełek Ł, Łukowiec D, Kubacki J, Włodarczyk P. Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite. Sci Rep 2019. https://doi.org/10.1038/s41598-019-56586-6.

[7]

Chand P, Vaish S, Kumar P. Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Phys B Condens Matter 2017. https://doi.org/10.1016/j.physb.2017.08.060.

[8]

Hcini S, Selmi A, Rahmouni H, Omri A, Bouazizi ML. Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T=Ni, Mg) ferrite nanoparticles prepared by sol gel method. Ceram Int 2017. https://doi.org/10.1016/j.ceramint.2016.11.055.

[9]

Kakade SG, Ma YR, Devan RS, Kolekar YD, Ramana C V. Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9-xErxO4). J Phys Chem C 2016. https://doi.org/10.1021/acs.jpcc.5b11188.

[10]

Kakade SG, Kambale RC, Kolekar YD, Ramana C V. Dielectric, electrical transport and magnetic properties of Er3+ substituted nanocrystalline cobalt ferrite. J Phys Chem Solid 2016. https://doi.org/10.1016/j.jpcs.2016.03.015.

[11]

Ansari SM, Sinha BB, Phase D, Sen D, Sastry PU, Kolekar YD, et al. Particle size, morphology, and chemical composition controlled CoFe2O4 nanoparticles with tunable magnetic properties via oleic acid based solvothermal synthesis for application in electronic devices. ACS Appl Nano Mater 2019. https://doi.org/10.1021/acsanm.8b02009.

[12]

Bartůněk V, Průcha D, Švecová M, Ulbrich P, Huber Š, Sedmidubský D, et al. Ultrafine ferromagnetic iron oxide nanoparticles: facile synthesis by low temperature decomposition of iron glycerolate. Mater Chem Phys 2016. https://doi.org/10.1016/j.matchemphys.2016.06.007.

[13]

Mechi N, Mallah A, Hcini S, Bouazizi ML, Boudard M, Dhahri A. Effects of sintering temperature on microstructural, magnetic, and impedance spectroscopic properties of Ni0.4Cd0.3Zn0.3Fe2O4 ferrites. J Supercond Nov Magnetism 2020. https://doi.org/10.1007/s10948-019-05416-x.

[14]

Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 1951. https://doi.org/10.1103/PhysRev.83.121.

[15]

Dressel M, Scheffler M. Verifying the Drude response. Ann Phys 2006. https://doi.org/10.1002/andp.200510198.

[16]

Scheffler M, Dressel M, Jourdan M, Adrian H. Extremely slow Drude relaxation of correlated electrons. Nature 2005. https://doi.org/10.1038/nature04232.

[17]

Truncik CJS, Huttema WA, Turner PJ, Özcan S, Murphy NC, Carrière PR, et al. Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn5 revealed by precision microwave spectroscopy. Nat Commun 2013. https://doi.org/10.1038/ncomms3477.

[18]

Jeon TI, Grischkowsky D, Mukherjee AK, Menon R. Electrical and optical characterization of conducting poly-3-methylthiophene film by THz time-domain spectroscopy. Appl Phys Lett 2001. https://doi.org/10.1063/1.1427754.

[19]

Šimša Z. Optical properties of charge carriers in magnetite and Mn ferrites. Phys Status Solidi 1979. https://doi.org/10.1002/pssb.2220960211.

[20]

Huang HY, Chen ZY, Wang RP, De Groot FMF, Wu WB, Okamoto J, et al. Jahn-Teller distortion driven magnetic polarons in magnetite. Nat Commun 2017. https://doi.org/10.1038/ncomms15929.

[21]

Fobasso MFC, Fotue AJ, Kenfack SC, Ekengue CM, Ngoufack CDG, Akay D, et al. Laser light and external magnetic field control of polaron in asymmetric quantum dot. Superlattice Microst 2019. https://doi.org/10.1016/j.spmi.2018.12.023.

[22]

Svizhenko A, Balandin A, Bandyopadhyay S, Stroscio M. Electron interaction with confined acoustic phonons in quantum wires subjected to a magnetic field. Phys Rev B Condens Matter 1998. https://doi.org/10.1103/PhysRevB.57.4687.

[23]

Degiorgi L, Wachter P, Ihle D. Small-polaron conductivity in magnetite. Phys Rev B 1987. https://doi.org/10.1103/PhysRevB.35.9259.

[24]

Ihle D, Lorenz B. Small-polaron band versus hopping conduction in Fe3O4. J Phys C Solid State Phys 1985. https://doi.org/10.1088/0022-3719/18/21/004.

Journal of Materiomics
Pages 150-155
Cite this article:
Radoń A, Łukowiec D, Włodarczyk P. Ultraslow electron-phonon scattering and polaron formation in magnetite. Journal of Materiomics, 2022, 8(1): 150-155. https://doi.org/10.1016/j.jmat.2021.04.008

296

Views

3

Crossref

3

Web of Science

4

Scopus

Altmetrics

Received: 02 January 2021
Revised: 14 March 2021
Accepted: 13 April 2021
Published: 20 April 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return