Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical synthesis of hydrogen peroxide (H2O2) through two-electron oxygen reduction represents an attractive alternative for on-site H2O2 generation. Here, we develop a facile thermally activated-persulfate approach to obtain oxidized carbon nanotubes (O-CNTs-x, x represents oxidation time) with enhanced H2O2 electrosynthesis performance. Electrochemical studies have demonstrated that the optimized O-CNTs-6 (i.e., oxidation time is 6 h) could deliver a sustained high selectivity of around 92% for H2O2 over a wide voltage window in 0.1 mol/L KOH and a high H2O2 production rate of 296.84 mmol/L g-1 cat h-1. Compared with pristine CNTs, the enhanced catalytic activity primarily stems from the newly-generated oxygen-containing functional groups and some defects created on the surface of O-CNTs-x. Importantly, the proposed oxidation process is proved to be valid for promoting H2O2 electrosynthesis performance of the Ketjen black. This study provides an universal oxidation method to obtain highly active carbon-based catalysts and initiates new opportunities for the exploration of high-performance electrosynthesis H2O2 catalysts.
Jiang Y, Ni P, Chen C, Lu Y, Yang P, Kong B, Fisher A, Wang X. Adv Energy Mater 2018;8:1801909.
Xia C, Kim JY, Wang H. Nat Catal 2020;3:605-7.
Shi X, Siahrostami S, Li G-L, Zhang Y, Chakthranont P, Studt F, Jaramillo TF, Zheng X, Nørskov JK. Nat Commun 2017;8:701.
Hâncu D, Beckman EJ. Generation of hydrogen peroxide directly from H and O using CO as the solvent. Green Chem 2001;3:80-6.
Gervasini A, Carniti P, Desmedt F, Miquel P. ACS Catal 2017;7:4741-52.
Sun B, Zhu H, Liang W, Zhang X, Feng J, Xu W. Int J Hydrogen Energy 2019;44:19547-54.
Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ. Angew Chem Int Ed 2014;53:102-21.
Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK. ACS Catal 2012;2:1654-1660.
Gao J, Yang HB, Huang X, Hung S-F, Cai W, Jia C, Miao S, Chen HM, Yang X, Huang Y, Zhang T, Liu B. Chem 2020;6:658-74.
Lu Y, Jiang Y, Gao X, Wang X, Chen W. J Am Chem Soc 2014;136:11687-97.
Jirkovský JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ. J Am Chem Soc 2011;133:19432-41.
Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J. Nat Mater 2013;12:1137-43.
Kim HW, Ross MB, Kornienko N, Zhang L, Guo J, Yang P, Mccloskey BD. Nat Catal 2018;1:282-90.
Chen S, Chen Z, Siahrostami S, Higgins D, Nordlund D, Sokaras D, Kim TR, Liu Y, Yan X, Nilsson E, Sinclair R, Nørskov JK, Jaramillo TF, Bao Z. J Am Chem Soc 2018;140:7851-59.
Li W, Zhao Z, Hu W, Cheng Q, Yang L, Hu Z, Liu YA, Wen K, Yang H. Chem Mater 2020;32:8553-60.
Liu W, Wang C, Su D, Qi W. J Catal 2018;368:1-7.
Xiong C, Li B, Liu H, Zhao W, Duan C, Wu H, Ni Y. J Mater Chem 2020;8:10898-908.
Xiong C, Li M, Zhao W, Duan C, Ni Y. Journal of Materiomics 2020;6:523-31.
Xiong C, Li B, Dang W, Zhao W, Duan C, Dai L, Ni Y. Mater Des 2020;195:108942.
Tao L, Wang Q, Dou S, Ma Z, Huo J, Wang S, Dai L. Chem Commun 2016;52:2764-7.
Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y. Nat Catal 2018;1:156-62.
Lu X, Wang D, Wu K-H, Guo X, Qi W. J Colloid Interface Sci 2020;573:376-83.
Dong Y, Su J, Zhou S, Wang M, Huang S, Lu C-H, Yang H, Fu F. Chem Commun 2020;56:7609-12.
Wang Y, Yi M, Wang K, Song S. Chin J Catal 2019;40:523-53.
Zhang H, Li Y, Zhao Y, Li G, Zhang F. ACS Appl Mater Interfaces 2019;11:27846-53.
Wang W, Hu Y, Liu Y, Zheng Z, Chen S. ACS Appl Mater Interfaces 2018;10:31855-9.
Neta P, Huie RE, Ross AB. J Phys Chem Ref Data 1988;17:1027-284.
Guan Y-H, Ma J, Li X-C, Fang J-Y, Chen L-W. Environ Sci Technol 2011;45:9308-14.
Buxton GV, Greenstock CL, Helman WP, Ross AB. J Phys Chem Ref Data 1988;17:513-886.
Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT. Environ Sci Technol 2007;41:1010-5.
Furman OS, Teel AL, Watts RJ. Environ Sci Technol 2010;44:6423-8.
Cui L, Cui L, Li Z, Zhang J, Wang H, Lu S, Xiang Y. J Mater Chem 2019;7:16690-5.
Gaidukevič J, Barkauskas J, Malaika A, Rechnia-Gorący P, Możdżyńska A, Jasulaitienė V, Kozłowski M. Chinese J Catal 2018;39:1633-45.
Wei Q, Yang X, Zhang G, Wang D, Zuin L, Banham D, Yang L, Ye S, Wang Y, Mohamedi M, Sun S. Appl Catal B Environ 2018;237:85-93.
Wang Q, Ji Y, Lei Y, Wang Y, Wang Y, Li Y, Wang S. ACS Energy Lett 2018;3:1183-91.
Huang B, Hu X, Liu Y, Qi W, Xie Z. J Power Sources 2019;413:408-17.
Dumitru A, Mamlouk M, Scott K. Electrochim Acta 2014;135:428-38.
Lee S, Peng J-W, Liu C-H. Carbon 2009;47:3488-97.
Rosca ID, Watari F, Uo M, Akasaka T. Carbon 2005;43:3124-31.
Yang W, Zhou M, Cai J, Liang L, Ren G, Jiang L. J Mater Chem 2017;5:8070-80.
Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008;46:833-40.
Zhang H, Wang B, Feng A, Zhang N, Jia Z, Huang Z, Liu X, Wu G. Compos B Eng 2019;167:690-9.
Kundu S, Wang Y, Xia W, Muhler M. J Phys Chem C 2008;112:16869-78.
Gong K, Du F, Xia Z, Durstock M, Dai L. Science 2009;323:760.
Yao Z, Hu M, Iqbal Z, Wang X. ACS Catal 2020;10:160-7.
Huang N-B, Zhang J-J, Sun Y, Sun X-N, Qiu Z-Y, Ge X-W. New J Chem 2020;44:14604-14.
Choi CH, Kwon HC, Yook S, Shin H, Kim H, Choi M. J Phys Chem C 2014;118:30063-70.
Liu Y, Quan X, Fan X, Wang H, Chen S. Angew Chem Int Ed 2015;54:6837-41.
Li Y, Liu T, Yang W, Zhu Z, Zhai Y, Gu W, Zhu C. Nanoscale 2019;11:19506-11.
Yang Q, Xu W, Gong S, Zheng G, Tian Z, Wen Y, Peng L, Zhang L, Lu Z, Chen L. Nat Commun 2020;11:5478.
Jiang Y, Yang L, Sun T, Zhao J, Lyu Z, Zhuo O, Wang X, Wu Q, Ma J, Hu Z. ACS Catal 2015;5:6707-12.
Chen S, Chen Z, Siahrostami S, Kim TR, Nørskov D, Sokaras D, Nowak S, To JWF, Higgins D, Sinclair R, Noerskov JK, Jaramillo TF, Bao Z. ACS Sustain Chem Eng 2018;6:311-7.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).