AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Facile and secure synthesis of porous partially fluorinated graphene employing weakly coordinating anion for enhanced high-performance symmetric supercapacitor

Ning CaoaTeng WangaRabah BoukherroubbYinghui CaicYijiang QinaFashun LiaPeng LiuaQingguo ShaoaMingle LiudXiaobei Zanga( )
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
Chambroad Holding Group, Economic Development Zone, Binzhou, 256500, China
China Petroleum Pipeline Engineering Co., Ltd, Asia Pacific Branch, China Petroleum Pipeline Engineering Co., Ltd., Development Zone, Langfang, 065000, China
Show Author Information

Graphical Abstract

Abstract

In this paper, porous partially fluorinated graphene (PFG) for supercapacitors (SCs) was fabricated by a mild and secure one-pot hydrothermal method utilizing weakly coordinating anion BF4 as the fluorine source. The hydrolysis rate of sodium fluoroborate was adjusted by controlling the reaction temperature and PFG containing semi-ionic C-F bonds was obtained, where the content of semi-ionic C-F bonds in PFG can be easily regulated. The final experimental results show that the incorporation of fluorine not only modulates the electrochemical properties of the material, but also creates abundant pores. When assembled in a symmetric supercapacitor, the PFG shows a high specific capacitance of 269.7 F g−1 at 1 A g−1 and a superior rate capability with 89.3% capacitance retained, as the current density is increased from 1 A g−1 even to 20 A g−1. Furthermore, the resultant energy density for PFG is 9.4 Wh kg−1 at a power density of 250.0 W kg−1 (1 A g−1). All these results confirm that as-prepared partially fluorinated graphene is appropriate for the application in SCs and mass production.

References

[1]

Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB. Chem Rev 2018;118:9233-80. https://doi.org/10.1021/acs.chemrev.8b00252.

[2]

Chen XL, Paul R, Dai LM. Natl Sci Rev 2017;4:453-89. https://doi.org/10.1093/nsr/nwx009.

[3]

Noori A, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF. Chem Soc Rev 2019;48:1272-341. https://doi.org/10.1039/c8cs00581h.

[4]

Zang XB, Wang JL, Qin YJ, Wang T, He CP, Shao QG, Zhu HW, Cao N. NanoMicro Lett 2020;12:24. https://doi.org/10.1007/s40820-020-0415-5.

[5]

Yan J, Wang Q, Wei T, Fan ZJ. Adv Energy Mater 2014;4. https://doi.org/10.1002/aenm.201300816.

[6]

Liao Q, Jin S, Wang C. Journal of Materiomics 2016;2:291-308. https://doi.org/10.1016/j.jmat.2016.09.002.

[7]

Song H, Su J, Wang C. Adv Mater 2021;33:e2006141. https://doi.org/10.1002/adma.202006141.

[8]

Song H, Su J, Wang C. Adv Energy Mater 2021;11:2003685. https://doi.org/10.1002/aenm.202003685.

[9]

Jin YN, Meng YN, Fan W, Lu HY, Liu TX, Wu SX. Electrochim Acta 2019;318: 865-74. https://doi.org/10.1016/j.electacta.2019.06.107.

[10]

Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH. J Mater Chem 2012;22:767-84. https://doi.org/10.1039/c1jm14468e.

[11]

Jiang L, Fan Z. Nanoscale 2014;6:1922-45. https://doi.org/10.1039/c3nr04555b.

[12]

Gao Y, Wang L, Li Z, Zhang Y, Xing B, Zhang C, Zhou A. Journal of Advanced Ceramics 2015;4:130-4. https://doi.org/10.1007/s40145-015-0143-3.

[13]

Sun H, Liu H, Hou Z, Zhou R, Liu X, Wang J-G. Chem Eng J 2020;387. https://doi.org/10.1016/j.cej.2020.124204.

[14]

Zhou J, Lian J, Hou L, Zhang J, Gou H, Xia M, Zhao Y, Strobel TA, Tao L, Gao F. Nat Commun 2015;6:8503. https://doi.org/10.1038/ncomms9503.

[15]

Zhou HH, Peng YT, Wu HB, Sun F, Yu H, Liu F, Xu QJ, Lu YF. Nanomater Energy 2016;21:80-9. https://doi.org/10.1016/j.nanoen.2015.12.016.

[16]

An HR, Li Y, Long P, Gao Y, Qin CQ, Cao C, Feng YY, Feng W. J Power Sources 2016;312:146-55. https://doi.org/10.1016/j.jpowsour.2016.02.057.

[17]

He JJ, Wang N, Yang Z, Shen XY, Wang K, Huang CS, Yi YP, Tu ZY, Li YL. Energy Environ Sci 2018;11:2893-903. https://doi.org/10.1039/c8ee01642a.

[18]

Lee YS, Cho TH, Lee BK, Rho JS, Lee YH. J Fluor Chem 2003;120:99-104. https://doi.org/10.1016/S0022-1139(02)00316-0.

[19]

Cheng L, Jandhyala S, Mordi G, Lucero AT, Huang J, Azcatl A, Addou R, Wallace RM, Colombo L, Kim J. ACS Appl Mater Interfaces 2016;8:5002-8. https://doi.org/10.1021/acsami.5b11701.

[20]

Fan K, Fu J, Liu X, Liu Y, Lai W, Liu X, Wang X. Chem Sci 2019;10:5546-55. https://doi.org/10.1039/c9sc00975b.

[21]

Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES. Nano Lett 2010;10:3001-5. https://doi.org/10.1021/nl101437p.

[22]

Vizintin A, Lozinšek M, Chellappan RK, Foix D, Krajnc A, Mali G, Drazic G, Genorio B, Dedryvère R, Dominko R. Chem Mater 2015;27:7070 -81. https://doi.org/10.1021/acs.chemmater.5b02906.

[23]

Saha S, Samanta P, Murmu NC, Banerjee A, Ganesh RS, Inokawa H, Kuila T. Chem Eng J 2018;339:334-45. https://doi.org/10.1016/j.cej.2018.01.141.

[24]

Poh HL, Sofer Z, Klimova K, Pumera M. J Mater Chem C 2014;2:5198-207. https://doi.org/10.1039/c4tc00395k.

[25]

Abdelkader-Fernández VK, Morales-Lara F, Melguizo M, García-Gallarín C, López-Garzón R, Godino-Salido ML, López-Garzón FJ, Domingo-García M, Perez-Mendoza MJ. Appl Surf Sci 2015;357:1410 -8. https://doi.org/10.1016/j.apsusc.2015.09.262.

[26]

Zhao FG, Zhao G, Liu XH, Ge CW, Wang JT, Li BL, Wang QG, Li WS, Chen QY. J Mater Chem 2014;2:8782-9. https://doi.org/10.1039/c4ta00847b.

[27]

Zhou S, Sherpa SD, Hess DW, Bongiorno A. J Phys Chem C 2014;118:26402-8. https://doi.org/10.1021/jp508965q.

[28]

Peng W, Li H, Song S. ACS Appl Mater Interfaces 2017;9:5204-12. https://doi.org/10.1021/acsami.6b11316.

[29]

Walter AL, Jeon K-J, Bostwick A, Speck F, Ostler M, Seyller T, Moreschini L, Kim YS, Chang YJ, Horn K, Rotenberg E. Appl Phys Lett 2011;98:184102. https://doi.org/10.1063/1.3586256.

[30]

Laheäär A, Przygocki P, Abbas Q, Béguin F. Electrochem Commun 2015;60: 21-5. https://doi.org/10.1016/j.elecom.2015.07.022.

[31]

Chen YJ, Liu ZE, Sun L, Lu ZW, Zhuo KL. J Power Sources 2018;390:215-23. https://doi.org/10.1016/j.jpowsour.2018.04.057.

[32]

Koji S, Yukihiro Y, Hideyuki F, Akio S. J Mol Liq 2016;219:493-6. https://doi.org/10.1016/j.molliq.2016.03.036.

[33]

Florian J, Pardis S, Xavier T, Mehdi A, Bertrand M, Lorenzo SP, Jean-Francois P, Philippe M, Christophe V. Dalton Trans 2020;49:274-8. https://doi.org/10.1039/c9dt04327f.

[34]

Feng W, Long P, Feng Y, Li Y. Adv Sci 2016;3:1500413. https://doi.org/10.1002/advs.201500413.

[35]

Jayaramulu K, Datta KKR, Rosler C, Petr M, Otyepka M, Zboril R, Fischer RA. Angew Chem Int Ed 2016;55:1178-82. https://doi.org/10.1002/anie.201507692.

[36]

Wang Y, Song Y, Xia Y. Chem Soc Rev 2016;45:5925-50. https://doi.org/10.1039/c5cs00580a.

[37]

Vermisoglou EC, Jakubec P, Bakandritsos A, Pykal M, Talande S, Kupka V, Zboril R, Otyepka M. Chem Mater 2019;31:4698-709. https://doi.org/10.1021/acs.chemmater.9b00655.

[38]

Zhao SH, Xu WW, Yang ZB, Zhang XY, Zhang QY. Electrochim Acta 2020;331. https://doi.org/10.1016/j.electacta.2019.135265.26146-26146.

[39]

Domga Karnan M, Oladoyinbo F, Noumi GB, Tchatchueng JB, Sieliechi MJ, Sathish M, Pattanayak DK. Electrochim Acta 2020;341:14. https://doi.org/10.1016/j.electacta.2020.135999.

[40]

Wang ZF, Wang JQ, Li ZP, Gong PW, Liu XH, Zhang LB, Ren JF, Wang HG, Yang SR. Carbon 2012;50:5403-10. https://doi.org/10.1016/j.carbon.2012.07.026.

[41]

Kim J, Fukushima T, Zhou R, Murakoshi K. Materials 2019;12. https://doi.org/10.3390/ma12020211.

[42]

Chen JJ, Huang Y, Li C, Chen XF, Zhang X. Appl Surf Sci 2016;360:534-9. https://doi.org/10.1016/j.apsusc.2015.10.187.

[43]

Zhang Y, Wen GW, Fan S, Ma WH, Li SH, Wu T, Yu ZC, Zhao BR. Electrochim Acta 2019;313:59-69. https://doi.org/10.1016/j.electacta.2019.05.021.

[44]

Zhang JL, Jiang M, Xing LB, Qin K, Liu TZ, Zhou J, Si WJ, Cui HY, Zhuo SP. Chin J Chem 2016;34:46-52. https://doi.org/10.1002/cjoc.201500656.

[45]

Zhang L, Zhang F, Yang X, Long GK, Wu YP, Zhang TF, Leng K, Huang Y, Ma YF, Yu A, Chen YS. Sci Rep 2013;3:9. https://doi.org/10.1038/srep01408.

[46]

Zhi MJ, Manivannan A, Meng FK, Wu NQ. J Power Sources 2012;208:345-53. https://doi.org/10.1016/j.jpowsour.2012.02.048.

[47]

Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF. Ceram Int 2015;41: 8230-4. https://doi.org/10.1016/j.ceramint.2015.02.100.

[48]

A M, A P. ACS Omega 2017;2:8039-50. https://doi.org/10.1021/acsomega.7b01275.

[49]

Zhang Y, Wen GW, Gao P, Bi SF, Tang XF, Wang D. Electrochim Acta 2016;221: 167-76. https://doi.org/10.1016/j.electacta.2016.10.115.

[50]

Fan XM, Yu C, Yang J, Ling Z, Qiu JS. Carbon 2014;70:130-41. https://doi.org/10.1016/j.carbon.2013.12.081.

[51]

Mohanraju K, Youngkwang K, Yung-Eun S, Joong KO. J Mater Chem 2018;6: 7522-31. https://doi.org/10.1039/c8ta00028j.

[52]

Na W, Jun J, Park JW, Lee G, Jang J. J Mater Chem 2017;5:17379-87. https://doi.org/10.1039/c7ta04406b.

Journal of Materiomics
Pages 113-122
Cite this article:
Cao N, Wang T, Boukherroub R, et al. Facile and secure synthesis of porous partially fluorinated graphene employing weakly coordinating anion for enhanced high-performance symmetric supercapacitor. Journal of Materiomics, 2022, 8(1): 113-122. https://doi.org/10.1016/j.jmat.2021.04.012

271

Views

10

Crossref

9

Web of Science

10

Scopus

Altmetrics

Received: 25 March 2021
Revised: 24 April 2021
Accepted: 28 April 2021
Published: 18 May 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return