AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Opinion Paper | Open Access

Influence of Re-ions with different ionic radius in Ba12ReNb9O36 on crystal structure and microwave dielectric properties

Pengcheng ZhangaHao Lia( )Xiaoqing ChenaXing Zhangb,cHongcheng Yangb,cCanbing LiaShuren Zhangb,c
College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China
Show Author Information

Graphical Abstract

Abstract

The Ba12ReNb9O36 (ReYb, Ce, Tm, Er, Y, Ho, Dy, Gd) ceramics are synthesized by solid-phase reaction method. The phase composition, crystal structure, microstructure, and microwave dielectric properties of the ceramics are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, Scanning electron microscopy and Raman spectrum. The optimal microwave dielectric properties (εr = 37.23, Q × f = 36600 GHz, and τf = 34 ppm/℃) are obtained for Ba12YbNb9O36 ceramic sintered at 1420 ℃ for 6 h. In this system, the variation of dielectric constant is dominated by polarizability. The Q × f is mainly affected by internal strain/fluctuation of d-spacing. The variation of τf is related to the temperature coefficient of dielectric constant and the oxygen octahedron distortion. Furthermore, the reduction of Ce4+ ions, the relative density, linear thermal expansion coefficient, and the second phase are also important factors affecting microwave dielectric properties.

References

[1]

Guo HH, Zhou D, Pang LX, Qi ZM. J Eur Ceram Soc 2019;39:2365-73. https://doi.org/10.1016/j.jeurceramsoc.2019.02.010.

[2]

Fan J, Zhao Q, Du K, Wang F, Wang XH, Lu WZ, et al. J Am Ceram Soc 2020;103: 3231-7. https://doi.org/10.1111/jace.17016.

[3]

Fop S, McCombie KS, Wildman EJ, Skakle JMS, McLaughlin AC. Chem Commun (Camb). 2019;55:2127-37. https://doi.org/10.1039/c8cc09534e.

[4]

Yang HY, Li QF, Liu ZH. Mod Phys Lett B 2017;31:15854-64. https://doi.org/10.1142/s0217984917503237.

[5]

Yin WG, Liu X, Tsvelik AM, Dean MPM, Upton MH, Kim J, et al. Phys Rev Lett 2013;111:057202. https://doi.org/10.1103/PhysRevLett.111.057202.

[6]

Kawashima S, Nishida M, Ueda I. Ouchi★ H. 1983;66:421-3. https://doi.org/10.1111/j.1151-2916.1983.tb10074.x.

[7]

Nomura S, Toyama K, Kaneta K. Jpn J Appl Phys 1982;21:L624-6. https://doi.org/10.1143/jjap.21.l624.

[8]

Tang Y, Fang L, Su C, Zhang H. Ceram Int 2014;40:7633-6. https://doi.org/10.1016/j.ceramint.2013.12.077.

[9]

Fang L, Li C, Peng X, Hu C, Wu B, Zhou H. J Am Ceram Soc 2010;93:1229-31. https://doi.org/10.1111/j.1551-2916.2009.03548.x.

[10]

Jawahar IN, Santha NI, Sebastian MT, Mohanan P. J Mater Res 2002;17: 3084-9. https://doi.org/10.1557/JMR.2002.0446.

[11]

Thirumal M, Davies PK. J Am Ceram Soc 2005;88:2126-8. https://doi.org/10.1111/j.1551-2916.2005.00426.x.

[12]

Kan A, Ogawa H, Yokoi A, Ohsato H. Jpn J Appl Phys 2006;45:7494-8. https://doi.org/10.1143/jjap.45.7494.

[13]

Lu F, Wang X, Pan Z, Pan F, Chai S, Liang C, et al. Dalton Trans 2015;44: 13173-85. https://doi.org/10.1039/c5dt00859j.

[14]

Tao F, Wang X, Gong M, Lu F, Allix M, Kuang X, et al. J Am Ceram Soc 2017;100:1212-20. https://doi.org/10.1111/jace.14601.

[15]

Li W, Fang L, Sun Y, Tang Y, Chen J, Li C. J Electron Mater 2016;46:1956-62. https://doi.org/10.1007/s11664-016-5179-9.

[16]

Xu Y, Fu R, Agathopoulos S, Wang X, Yang Y, Cai J. J Alloys Compd 2017;693: 454-61. https://doi.org/10.1016/j.jallcom.2016.09.226.

[17]

Thomas S, Sebastian MT. J Am Ceram Soc 2009;92:2975-81. https://doi.org/10.1111/j.1551-2916.2009.03326.x.

[18]

Surendran KP, Solomon S, Varma MR, Mohanan P, Sebastian MT. J Mater Res 2011;17:2561-6. https://doi.org/10.1557/jmr.2002.0372.

[19]

Hakki BW, Coleman PD. IRE Transactions on Microwave Theory and Techniques 1960;8:402-10. https://doi.org/10.1109/TMTT.1960.1124749.

[20]

Zhang J, Zuo R. J Am Ceram Soc 2017;100:5249-58. https://doi.org/10.1111/jace.15077.

[21]

Chen X, Li H, Zhang P, Hu H, Tao Y, Li G. J Am Ceram Soc 2021:1-10. https://doi.org/10.1111/jace.17762.00.

[22]

Meshesha DS, Matangi RC, Tirukkovalluri SR, Bojja S. S Afr J Chem Eng 2017;23:10-6. https://doi.org/10.1016/j.sajce.2016.10.004.

[23]

Hryniewicz T, Rokosz K, Sandim HRZ. SEM/EDX and XPS studies of niobium after electropolishing. Appl Surf Sci 2012;263:357-61. https://doi.org/10.1016/j.apsusc.2012.09.060.

[24]

Beche E, Charvin P, Perarnau D, Abanades S, Flamant G. Surf Interface Anal. 2008;40:264-7. https://doi.org/10.1002/sia.2686.

[25]

Hartmann P, Brezesinski T, Sann J, Lotnyk A, Eufinger J-P, Kienle L, et al. ACS Nano 2013;7:2999-3013. https://doi.org/10.1021/nn400255w.

[26]

Song XQ, Xie MQ, Du K, Lu W-Z, Lei W. Journal of Materiomics 2019;5: 606-17. https://doi.org/10.1016/j.jmat.2019.07.005.

[27]

Shannon RD, Subramanian MA, Allik TH, Kimura H, Kokta MR, Randles MH, et al. J Appl Phys 1990;67:3798-802. https://doi.org/10.1063/1.345026.

[28]

Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993;73:348-66. https://doi.org/10.1063/1.353856.

[29]

Abdul Khalam L, Sreemoolanathan H, Ratheesh R, Mohanan P, Sebastian MT. Mater Sci Eng, B 2004;107:264-70. https://doi.org/10.1016/j.mseb.2003.11.019.

[30]

Yang H, Zhang S, Yang H, Zhang X, Li E. Inorg Chem 2018;57:8264-75. https://doi.org/10.1021/acs.inorgchem.8b00873.

[31]

Ohsato H. J Eur Ceram Soc 2007;27:2911-5. https://doi.org/10.1016/j.jeurceramsoc.2006.11.044.

[32]

Stokes AR, Wilson AJC. Proc Phys Soc 1944;56:174-81. https://doi.org/10.1088/0959-5309/56/3/303.

[33]

Zhang X, Tang B, Fang Z, Yang H, Xiong Z, Xue L, et al. Inorganic Chemistry Frontiers 2018;5:3113-25. https://doi.org/10.1039/c8qi00956b.

[34]

Li H, Zhang P, Yu S, Yang H, Tang B, Li F, et al. Ceram Int 2019;45:11639-47. https://doi.org/10.1016/j.ceramint.2019.03.037.

[35]

Xiong Z, Yang C, Tang B, Fang Z, Chen H, Zhang S. Ceram Int 2018;44:7384-92. https://doi.org/10.1016/j.ceramint.2017.12.186.

[36]

Bosman AJ, Havinga EE. Phys Rev 1963;129:1593-600. https://doi.org/10.1103/PhysRev.129.1593.

[37]

Guo H-H, Zhou D, Pang L-X, Qi Z-M. J Eur Ceram Soc 2019;39:2365-73. https://doi.org/10.1016/j.jeurceramsoc.2019.02.010.

[38]

Kroumova E, Aroyo MI, Perez-Mato JM, Kirov A, Capillas C, Ivantchev S, et al. Phase Transitions 2003;76:155-70. https://doi.org/10.1080/0141159031000076110.

[39]

Wang CH, Jing XP, Wang L, Lu J. J Am Ceram Soc 2009;92:1547-51. https://doi.org/10.1111/j.1551-2916.2009.03067.x.

[40]

Dong HL, Shi F. Appl Spectrosc Rev 2011;46:207-21. https://doi.org/10.1080/05704928.2010.538459.

[41]

Surendran KP, Sebastian MT, Mohanan P, Moreira RL, Dias A. Chem Mater 2005;17:142-51. https://doi.org/10.1021/cm048411s.

[42]

Dias A, Khalam LA, Sebastian MT, Paschoal CWA, Moreira RL. Chem Mater 2006;18:214-20. https://doi.org/10.1021/cm051982f.

[43]

Ramarao SD, Murthy VRK. Dalton Trans 2015;44:2311-24. https://doi.org/10.1039/c4dt02364a.

Journal of Materiomics
Pages 104-112
Cite this article:
Zhang P, Li H, Chen X, et al. Influence of Re-ions with different ionic radius in Ba12ReNb9O36 on crystal structure and microwave dielectric properties. Journal of Materiomics, 2022, 8(1): 104-112. https://doi.org/10.1016/j.jmat.2021.05.001

274

Views

14

Crossref

15

Web of Science

15

Scopus

Altmetrics

Received: 13 September 2020
Revised: 16 April 2021
Accepted: 04 May 2021
Published: 24 May 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return