AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte

Bo LiuaQianglin HuaTianyu GaoaPeiguang LiaoaYufeng WenaZiheng LudJiong YangbSiqi Shib,c( )Wenqing Zhange( )
College of Mathematics and Physics, Jinggangshan University, Ji'an, Jiangxi, 343009, China
Materials Genome Institute, Shanghai University, Shanghai, 200444, China
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
Department of Materials Science & Metallurgy, University of Cambridge, CB3 0FS, United Kingdom
Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
Show Author Information

Graphical Abstract

Abstract

Lithium-rich antiperovskites are promising solid-state electrolytes for all-solid-state lithium-ion batteries because of their high structural tolerance and good formability. However, the experimentally reported proton-free Li3OCl is plagued by its inferior interfacial compatibility and harsh synthesis conditions. In contrast, Li2OHCl is a thermodynamically favored phases and is easier to achieve than Li3OCl. Due to the proton inside this material, it exhibits interesting lithium diffusion mechanisms. Herein, we present a systematic investigation of the ionic transport, phase stability, and electrochemical-chemical stability of Li2OHCl using first-principles calculations. Our results indicate that Li2OHCl is thermodynamically metastable and is an electronic insulator. The wide electrochemical stability window and high chemical stability of Li2OHCl against various electrodes are confirmed. The charged defects are the dominant conduction mechanism for Li-transport, with a low energy barrier of ~0.50 eV. The Li-ion conductivity estimated by ab initio molecular dynamics simulations is about 1.3 × 10−4 S cm−1 at room temperature. This work identifies the origin of the high interfacial stability and ionic conductivity of Li2OHCl, which can further lead to the design of such as a cathode coating. Moreover, all computational methods for calculating the properties of Li2OHCl are general and can guide the design of high-performance solid-state electrolytes.

References

[1]

Nolan AM, Liu Y, Mo Y. ACS Energy Lett 2019;4: 2444-51.

[2]

Xiao Y, Wang Y, Bo S, Kim J, Miara L, Ceder G. Nat Rev Mater 2020;5: 105-26.

[3]

Liu J, Bao Z, Cui Y, Dufek E, Goodenough JB, Khalifah P, et al. Nat Energy 2019;4: 180-6.

[4]

Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, et al. Nat Energy 2016;1: 16030.

[5]

Park KH, Bai Q, Kim DH, Oh DY, Zhu Y, Mo Y, et al. Adv Energy Mater 2018;8: 1800035.

[6]

Lang B, Ziebarth B, Elsäasser C. Chem Mater 2015;27: 5040-8.

[7]

Li Y, Zhou W, Chen X, Lu X, Cui Z, Xin S, et al. Proc Natl Acad Sci U S A 2016;113: 13313-7.

[8]

Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zaiβ T, et al. Angew Chem Int Ed 2008;47: 755-8.

[9]

Bernges T, Culver SP, Minafra N, Koerver R, Zeier W. Inorg Chem 2018;57: 13920-8.

[10]

Miara LJ, Richards WD, Wang YE, Ceder G. Chem Mater 2015;27: 4040-7.

[11]

Liu B, Yang J, Yang H, Ye C, Mao Y, Wang J, et al. J Mater Chem 2019;7: 19961-9.

[12]

Zhao Y, Daemen LL. J Am Chem Soc 2012;134: 15042-7.

[13]

Lu Z, Chen C, Baiyee ZM, Chen X, Niu C, Ciucci F. Phys Chem Chem Phys 2015;17: 32547-55.

[14]

Nolan AM, Zhu Y, He X, Bai Q, Mo Y. Joule 2018;2: 2016-46.

[15]

Xiao Y, Miara LJ, Wang Y, Ceder G. Joule 2019;3: 1-24.

[16]

Zhu Y, He X, Mo Y. J Mater Chem 2016;4: 3253-66.

[17]

Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, et al. Chin Phys B 2016;25: 018212.

[18]

He B, Chi S, Ye A, Mi P, Zhang L, Pu B, et al. Sci Data 2020;7: 151.

[19]

Liu B, Wang D, Avdeev M, Shi S, Yang J, Zhang W. ACS Sustainable Chem Eng 2020;8: 948-57.

[20]

Dawson JA, Attari TS, Chen H, Emge S, Johnston K, Islam M. Energy Environ Sci 2018;11: 2993-3002.

[21]

Schwering G, Hönnerscheid A, van Wüllen L, Jansen M. ChemPhysChem 2003;4: 343-8.

[22]

Hood ZD, Wang H, Samuthira Pandian A, Keum JK, Liang C. J Am Chem Soc 2016;138: 1768-71.

[23]

Song A-Y, Xiao Y, Turcheniuk K, Upadhya P, Ramanujapuram A, Benson J, et al. Adv. Energy Mater. 2018;8: 1700971.

[24]

Howard J, Holzwarth N. Phys Rev B 2019;99: 014109.

[25]

Xu Z, Chen R, Zhu H. J Mater Chem 2019;7: 12645-53.

[26]

Zhang B, Lin Z, Wang L-W, Pan F. ACS Appl Mater Interfaces 2020;12: 6007-14.

[27]

Kresse G. Phys Rev B 1999;59: 1758-75.

[28]

Perdew J, Burke K, Ernzerhof M. Phys Rev Lett 1996;77: 3865-8.

[29]

Henkelman G, Uberuaga BP, Jonsson H. J Chem Phys 2000;113: 9901-4.

[30]

Deng Z, Zhu Z, Chu I-H, Ong S. Chem Mater 2017;29: 281-8.

[31]

Richards WD, Miara LJ, Wang Y, Kim J, Ceder G. Chem Mater 2016;28: 266-73.

[32]

Howard J, Hood ZD, Holzwarth N. Phys Rev Mater 2017;1: 075406.

[33]

Sun J, Ruzsinszky A, Perdew JP. Phys Rev Lett 2015;115: 036402.

[34]

Effat MB, Liu J, Lu Z, Wan T, Curcio A, Ciucci F. ACS Appl Mater Interfaces 2020;12: 55011-22.

[35]

Mo Y, Ong SP, Ceder G. Chem Mater 2012;24: 15-7.

[36]

Chu I-H, Nguyen H, Hy S, Lin Y-C, Wang Z, Xu Z, et al. ACS Appl Mater Interfaces 2016;8: 7843-53.

[37]

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, et al. Nat Mater 2011;10: 682-6.

[38]

Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, et al. Solid State Ionics 2007;178: 1163-7.

[39]

Han F, Zhu Y, He X, Mo Y, Wang C. Adv Energy Mater 2016;6: 1501590.

[40]

Yang Y, Wu Q, Cui Y, Chen Y, Shi S, Wang R, et al. ACS Appl Mater Interfaces 2016;8: 25229-42.

[41]

Lei X, Wu W, Xu B, Ouyang C, Huang K. Mater Des 2020;185: 108264.

[42]

He X, Zhu Y, Epstein A, Mo Y. NPJ Comput Mater 2018;4: 18.

[43]

Song A-Y, Turcheniuk K, Leisen J, Xiao Y, Meda L, Borodin O, et al. Adv Energy Mater 2020;10: 1903480.

[44]

Wang F, Evans HA, Kim K, Yin L, Li Y, Tsai P-C, et al. Chem Mater 2020;32: 8481-91.

[45]

Zhao Q, Pan L, Li Y-J, Chen L, Shi S. Rare Met 2018;37: 497-503.

[46]

Koedtruad A, Patino MA, Ichikawa N, Kan D, Shimakawa Y. J Solid State Chem 2020;286: 121263.

[47]

Yu X, Manthiram A. Energy Environ Sci 2018;11: 527-43.

Journal of Materiomics
Pages 59-67
Cite this article:
Liu B, Hu Q, Gao T, et al. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte. Journal of Materiomics, 2022, 8(1): 59-67. https://doi.org/10.1016/j.jmat.2021.05.006

404

Views

22

Crossref

21

Web of Science

23

Scopus

Altmetrics

Received: 01 February 2021
Revised: 04 May 2021
Accepted: 23 May 2021
Published: 05 June 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return