AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Opinion Paper | Open Access

Constructing MOF-derived CoP-NC@MXene sandwich-like composite by in-situ intercalation for enhanced lithium and sodium storage

Xiaobin Liua,bFanfan LiuaXudong ZhaoaLi-Zhen Fana( )
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
Show Author Information

Graphical Abstract

Abstract

The development of dual-function anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) is exceedingly essential. Herein, with rationally designed hierarchical metal-organic framework (MOF)@MXene as a precursor, a novel sandwich-like CoP-NC@Ti3C2Tx composite has been successfully fabricated by the following phosphorization reaction. As anode material for LIBs, the CoP-NC@Ti3C2Tx composite exhibits remarkable electrochemical performance with high-rate capability (147.8 mAh g−1 at 2000 mA g−1; 245.6 mAh g−1 at 100 mA g−1) and ultralong cycling life (2000 cycles with a capacity retention over 100%). For SIBs, it delivers a discharge capacity of 101.6 mAh g−1 at a current density of 500 mA g−1 after 500 cycles. The well-designed sandwich-like composite effectively supports the easy access to electrolyte, facilitate the Li/Na ion transportation, and protect the active material from pulverization upon long cycling. In addition, the electrochemical reaction kinetics and Li-migration kinetics of the CoP-NC@Ti3C2Tx composite have been pioneeringly illuminated by pseudocapacitive behavior calculation and density functional theory (DFT) computations, respectively. This work sheds light on the rational design and development of MOF/MXene-derived dual-function anode materials for Li/Na-storage.

References

[1]

Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ Sci 2011;4: 3243-62.

[2]

Slater MD, Kim D, Lee E, Johnson CS. Adv Funct Mater 2013;23: 947-58.

[3]

Tarascon JM, Armand M. Nature 2001;414: 359-67.

[4]

Kundu D, Talaie E, Duffort V, Nazar LF. Angew Chem Int Ed 2015;54: 3431-48.

[5]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Adv Mater 2011;23: 4248-53.

[6]

Huang J, Meng R, Zu L, Wang Z, Feng N, Yang Z, Yu Y, Yang J. Nano Energy 2018;46: 20-8.

[7]

Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W. ACS Nano 2016;10: 2491-9.

[8]

Meng R, Huang J, Feng Y, Zu L, Peng C, Zheng L, Zheng L, Chen Z, Liu G, Chen B, Mi Y, Yang J. Adv. Energy Mater. 2018;8: 1801514.

[9]

Meng J, Zhang F, Zhang L, Liu L, Chen J, Yang B, Yan X. J. Energy Chem. 2020;46: 256-63.

[10]

Zhang R, Xue Z, Qin J, Sawangphruk M, Zhang X, Liu R. J. Energy Chem. 2020;50: 143-53.

[11]

Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, Gogotsi Y. Nat Commun 2013;4.

[12]

Zhao M, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y. Adv Mater 2015;27: 339-45.

[13]

Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X. ACS Nano 2017;11: 2459-69.

[14]

Liu F, Liu Y, Zhao X, Liu X, Fan L. J Mater Chem A 2019;7: 16712-9.

[15]

Xiao X, Zou L, Pang H, Xu Q. Chem Soc Rev 2020;49: 301-31.

[16]

Zhao L, Dong B, Li S, Zhou L, Lai L, Wang Z, Zhao S, Han M, Gao K, Lu M, Xie X, Chen B, Liu Z, Wang X, Zhang H, Li H, Liu J, Zhang H, Huang X, Huang W. ACS Nano 2017;11: 5800-7.

[17]

Ge X, Li Z, Yin L. Nano Energy 2017;32: 117-24.

[18]

Yan L, Dai P, Wang Y, Gu X, Li L, Cao L, Zhao X. ACS Appl Mater Interfaces 2017;9: 11642-50.

[19]

Von Lim Y, Huang S, Zhang Y, Kong D, Wang Y, Guo L, Zhang J, Shi Y, Chen TP, Ang LK, Yang HY. Energy Storage Mater 2018;15: 98-107.

[20]

Liu X, Zhang L, Wang J. J. Materiomics 2021;7: 440-59.

[21]

Kang W, Zhang Y, Fan L, Zhang L, Dai F, Wang R, Sun D. ACS Appl Mater Interfaces 2017;9: 10602-9.

[22]

Yang J, Gao H, Men S, Shi Z, Lin Z, Kang X, Chen S. Adv Sci 2018: 1800763.

[23]

Zhao D, Zhao R, Dong S, Miao X, Zhang Z, Wang C, Yin L. Energy Environ Sci 2019;12: 2422-32.

[24]

Zeng P, Li J, Ye M, Zhuo K, Fang Z. Chem-Eur J 2017;23: 9517-24.

[25]

Liu Y, Zhang N, Liu X, Chen C, Fan L, Jiao L. Energy Storage Mater 2017;9: 170-8.

[26]

Liu Y, Zhang N, Yu C, Jiao L, Chen J. Nano Lett 2016;16: 3321-8.

[27]

Jastrzebska AM, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Rozmyslowska A, Olszyna A. J Hazard Mater 2017;339: 1-8.

[28]

Liu Z, Yang S, Sun B, Chang X, Zheng J, Li X. A peapod-like CoP@C nanostructure from phosphorization in a low-temperature molten salt for highperformance lithium-ion batteries. Angew Chem Int Ed 2018;57: 10187-91.

[29]

Tian W, Hu H, Wang Y, Li P, Liu J, Liu J, Wang X, Xu X, Li Z, Zhao Q, Ning H, Wu W, Wu M. ACS Nano 2018;12: 1990-2000.

[30]

Guo C, Zhang W, Liu Y, He J, Yang S, Liu M, Wang Q, Guo Z. Adv Funct Mater 2019;29: 1901925.

Journal of Materiomics
Pages 30-37
Cite this article:
Liu X, Liu F, Zhao X, et al. Constructing MOF-derived CoP-NC@MXene sandwich-like composite by in-situ intercalation for enhanced lithium and sodium storage. Journal of Materiomics, 2022, 8(1): 30-37. https://doi.org/10.1016/j.jmat.2021.06.002

316

Views

19

Crossref

29

Web of Science

29

Scopus

Altmetrics

Received: 22 March 2021
Revised: 29 May 2021
Accepted: 07 June 2021
Published: 11 June 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return