AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Realizing high thermoelectric performance in hot-pressed polycrystalline AlxSn1-xSe through band engineering tuning

Nan Xina( )Yifei LiaHao ShenbLongyun ShenaGuihua Tanga
MOE Key Laboratory of Thermo–Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

SnSe-based thermoelectric materials are being explored since they have potential high thermoelectric figure of merit. We synthesized polycrystalline AlxSn1-xSe (x = 0.01, 0.02, 0.03 and 0.04) by hot-pressing method, and combined theoretical estimation with experimental measurement to investigate the influence of Al doping on thermoelectric properties of SnSe. It was found that dopant Al can effectively adjust the band structure of SnSe by introducing intermediate band. Al doping with low content (x = 0.01 and 0.02) can introduce a single intermediate band close to the valence band maximum or conduction band minimum, achieving band engineering optimization. In high temperature region (498 K < T < 823 K), the electronic transport properties significantly enhance with thermal excitation. The lattice thermal conductivity reduces with the Al atomic point defect scattering, leading to a low thermal conductivity of 0.47 W m−1K−1 in Al0.04Sn0.96Se at 823 K. As a result, a high ZT of 0.84 at 823 K is obtained from the Al0.04Sn0.96Se perpendicular to the pressing direction, which is 58.5% larger than that of SnSe. In addition, dopant Al can adjust the anisotropy of polycrystalline SnSe. The anisotropy of electronic properties are enhanced with low doping level (x = 0.01, 0.02) and suppressed with high doping level (x = 0.03, 0.04).

References

[1]

Zhao LD, Dravid VP, Kanatzidis MG. Energ Environ Sci 2014;7: 251-68.

[2]

Etemadi A, Emdadi A, AsefAfshar O, AsefAfshar O, Emami Y. Energy Procedia 2011;12: 936-43.

[3]

Allison LK, Andrew TL. Adv Mater Technol-US 2019;4: 1800615.

[4]

Mehta RJ, Zhang Y, Karthik C, Singh B, Siegel RW, Borca-Tasciuc T, Ramanath G. Nat Mater 2012;11: 233.

[5]

Hori T. Int J Heat Mass Tran 2020;156: 119818.

[6]

Das S, Singha P, Kulbachinskii VA, Kytin VG, Das G, Janaky S, Deb AK, Mukherjee S, Maignan A, Hebert S, Daou R, Narayana C, Bandyopadhyay S, Banerjee A. J Materiomics 2021;7: 545-55.

[7]

Rajkumar R, Nedunchezhian ASA, Sidharth D, Rajasekaran P, Arivanandhan M, Jayavel R, Anbalagan G. J Alloys Compd 2020;835: 155276.

[8]

Dong JF, Pei J, Hayashi K, Saito W, Li HZ, Cai BW, Miyazaki Y, Li JF. J Materiomics 2021;7: 577-84.

[9]

Ni D, Song HJ, Chen YX, Cai KF. J Materiomics 2020;6: 364-70.

[10]

Leng HQ, Zhou M, Zhao J, Han YM, Li LF. J Electron Mater 2016;45: 527-34.

[11]

Li W, Chen ZW, Lin SQ, Chang YJ, Ge BH, Chen Y, Pei YZ. J Materiomics 2015;1: 307-15.

[12]

Gao JL, Zhu HN, Mao T, Zhang L, Di JX, Xu GY. Mater Res Bull 2017;93: 366-72.

[13]

Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Nature 2011;473: 66.

[14]

Saparamadu U, Boor JD, Mao J, Song SW, Tian F, Liu WS, Zhang QY, Ren ZF. Acta Mater 2017;141: 154-62.

[15]

Zhao LD, Tan GJ, Hao SQ, He JQ, Pei YL, Chi H, Wang H, Gong SK, Xu HB, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG. Science 2016;351: 141-4.

[16]

Li S, Zhang FH, Chen C, Li XF, Cao F, Sui JH, Liu XJ, Ren ZF, Zhang Q. Acta Mater 2020;190: 1-7.

[17]

Wei TR, Li ZL, Sun FH, Pan Y, Wu CF, Farooq MU, Tang HC, Li F, Li B, Li JF. Sci Rep 2017;7: 43262.

[18]

Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Nature 2014;508: 373-7.

[19]

Li CW, Hong J, May AF, Bansal D, Chi S, Hong T, Ehlers G, Delaire O. Nat Phys 2015;11: 1063-9.

[20]

Hong J, Delaire O. Mater Today Phys 2019;10: 100093.

[21]

Peng KL, u LX, Zhan H, Hui S, Tang XD, Wang GW, Dai JY, Uher C, Wang GY, Zhou XY. Energ Environ Sci 2016;9: 454-60.

[22]

Duong AT, Nguyen VQ, Duvjir G, Duong VT, Kwon S, Song JY, Lee JK, Lee JE, Park SD, Min T, Lee J, Kim J, Cho S. Nat Commun 2016;7: 13713.

[23]

Sassi S, Candolfi C, Vaney JB, Ohorodniichuk V, Masschelein P, Dauscher A, Lenoir B. Appl Phys Lett 2014;104: 212105.

[24]

Chen CL, Wang H, Chen YY, Day T, Snyder GJ. J Mater Chem A 2014;2: 11171-6.

[25]

Cai B, Li J, Sun H, Zhao P, Yu F, Zhang L, Yu DL, Tian YJ, Xu B. J Alloys Compd 2017;727: 1014-9.

[26]

Li JC, Li D, Qin XY, Zhang J. Scripta Mater 2017;126: 6-10.

[27]

Gong YR, Chang C, Wei W, Liu J, Xiong WJ, Chai S, Li D, Zhang J, Tang GD. Scripta Mater 2018;147: 74-8.

[28]

Lee YK, Luo Z, Cho SP, Kanatzidis MG, Chung I. Joule 2019;3: 719-31.

[29]

Ibrahim D, Vaney JB, Sassi S, Candolfi C, Ohorodniichuk V, Levinsky P, Semprimoschnig C, Dauscher A, Lenoir B. Appl Phys Lett 2017;110: 032103.

[30]

Aseginolaza U, Bianco R, Monacelli L, Paulatto L, Calandra M, Mauri F, Bergara A, Errea I. Phys Rev Lett 2019;122: 075901.

[31]

Wei PC, Bhattacharya S, He J, Neeleshwar S, Podila R, Chen YY, Rao AM. Nature 2016;539: E1-2.

[32]

Chen ZG, Shi XL, Zhao LD, Zou J. Prog Mater Sci 2018;97: 283-346.

[33]

Singh NK, Bathula S, Gahtori B, Tyagi K, Haranath D, Dhar A. Journal of Alloys and Compounds. 2016;668: 152-8.

[34]

Ren W, Song Q, Zhu H, Mao J, You L, Gamage GA, Zhou J, Zhou T, Jiang J, Wang C, Luo J, Wu J, Wang Z, Chen G, Ren Z. Mater Today Phys 2020;15: 100250.

[35]

You YH, Su XL, Liu W, Yan YG, Hu TZ, Uher C, Tang XF. RSC Adv 2017;55: 34466-72.

[36]

Feng ZZ, Wang YX, Yan YL, Zhang GB, Yang JM, Zhang JH, Wang C. Phys Chem Chem Phys 2015;17: 15156-64.

[37]

Chere EK, Zhang Q, Dahal K, Cao F, Mao J, Ren ZF. J Mater Chem A 2016;4: 1848-54.

[38]

Kresse G, Hafner J. Phys Rev B 1994;49: 14251-69.

[39]

Furthmuller GKJ. Phys Rev B 1996;54: 11169-86.

[40]

Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett 1996;77: 3865-8.

[41]

Kresse G, Joubert D. Phys Rev B 1999;59: 1758-75.

[42]

Chattopadhyay T, Pannetier J, Von Schnering HG. J Phys Chem Solids 1986;47: 879-85.

[43]

Fang L, Iyer RG, Tan GJ, West DJ, Zhang SB, Kanatzidis MG. J Am Chem Soc 2014;136: 11079-84.

[44]

You YH, Su XL, Liu W, Yan YG, Hu TZ, Uher C, Tang XF. RSC Adv 2017;7: 34466-72.

[45]

Kutorasinski K, Wiendlocha B, Kaprzyk S, Tobola J. Phys Rev B 2015;91: 205201.

[46]

Wei TR, Tan GJ, Zhang XM, Wu CF, Li JF, Dravid VP, Snyder GJ, Kanatzidis MG. J Am Chem Soc 2016;138: 8875-82.

[47]

Johari KK, Bhardwaj R, Chauhan NS, Gahtori B, Bathula S, Auluck S, Dhakate SR. ACS Appl Energ Mater 2019;3: 1349-57.

[48]

Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A, Dhar A. ACS Appl Energ Mater 2018;1: 757-64.

[49]

Zhao LD, Lo S, He J, Li H, Biswas K, Androulakis J, Wu CI, Hogan TP, Chung DY, Dravid VP, Kanatzidis MG. J Am Chem Soc 2011;133: 20476-87.

[50]

Kim JH, Oh S, Kim YM, So HS, Lee H, Rhyee JS, Park SD, Kim SJ. J Alloys Compd 2016;682: 785-90.

[51]

Hong M, Chen ZG, Yang L, Chasapis TC, Kang SD, Zou YC, Auchterlonie GJ, Kanatzidis M G, Snyder GJ, Zou J. J Mater Chem A 2017;5: 10713-21.

[52]

Peng KL, Wu H, Yan YC, Guo LJ, Wang GY, Lu X, Zhou XY. J Mater Chem A 2017;5: 14053-60.

[53]

Fu YJ, Xu JT, Liu GQ, Tan XJ, Liu Z, Wang X, Shao HZ, Jiang HC, Liang B, Jiang J. J Electron Mater 2017;46: 3182-6.

[54]

Gao JL, Xu GY. Intermetallics 2017;89: 40-5.

[55]

Wang QX, Yu WY, Fu XN, Qiao C, Xia CX, Jia Y. Phys Chem Chem Phys 2016;18: 8158-64.

[56]

Khan W, Minar J, Khan SA, Asghar H. J Solid State Electr 2021;25: 731-42.

[57]

Madsen GK, Carrete J, Verstraete MJ. Comput Phys Commun 2018;231: 140-5.

[58]

Li YF, Tang GH, Fu B, Zhang M, Zhao X. ACS Appl Energ Mater 2020;3: 9234-45.

[59]

Bhardwaj R, Gahtori B, Johari KK, Bathula S, Chauhan NS, Vishwakarma A, Dhakate SR, Auluck S, Dhar A. ACS Appl Energ Mater 2019;2: 1067-76.

Journal of Materiomics
Pages 475-488
Cite this article:
Xin N, Li Y, Shen H, et al. Realizing high thermoelectric performance in hot-pressed polycrystalline AlxSn1-xSe through band engineering tuning. Journal of Materiomics, 2022, 8(2): 475-488. https://doi.org/10.1016/j.jmat.2021.06.010

371

Views

13

Crossref

13

Web of Science

15

Scopus

Altmetrics

Received: 07 May 2021
Revised: 15 June 2021
Accepted: 29 June 2021
Published: 07 July 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return