AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Enhancing anti-oxidation and thermal-radiation performance of the repaired borosilicate glass coating on C/C composites by Sm-doping

Han-Hui WangLiu TengJing-An KongXue-Song LiuXiao-Hong Shi( )He-Jun Li( )
State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

To repair the damaged SiC coated C/C composites, a double-layer system including a Sm-doped borosilicate glass external layer and a SiSiC inner layer was prepared by a slurry-based laser cladding technique. Isothermal oxidation experiment and indirect/direct thermal-radiation measurements were performed. The results showed that the absorbance of borosilicate glass to the laser at 900–1200 nm was improved significantly by Sm-doping. Consequently, the repaired coating with a more compact structure and better oxidation resistance was obtained. After oxidation at 1773 K for 10 h, the mass loss of the damaged sample could be reduced by 74.98% with repairing. By increasing laser-absorption and reducing viscosity, the thermal-radiation property of the repaired coating was enhanced to decrease the surface temperature greatly. A repair system with excellent thermal protection performance was achieved.

References

[1]

Tong M, Fu Q, Yao S, Liu T, Feng T, Hu D, Zhou L. J. Materiomics 2020;6:263-73.

[2]

Li B, Li H, Hu X, Feng G, Yao X, Wang P. J Eur Ceram Soc 2020;40:2768-80.

[3]

Li J, Zhang Y, Wang H, Fu Y, Chen G, Xi Z. J Alloys Compd 2020;824:153934.

[4]

Wang C, Li K, He D, Shi X. Ceram Int 2020;46:6723-32.

[5]

Liu G, Cheng L, Luan X, Zhang J. J Mater Sci Technol 2019;35:2957-65.

[6]

Li B, Mao B, Wang X, He T. Surf Coating Technol 2020;389:125647.

[7]

Deng J, Hu K, Lu B, Zheng B, Fan S, Zhang L, Cheng L. Ceram Int 2019;45:20860-72.

[8]

Wang H, Li T, Zhang L. Hot Work Technol 2017;46:13-7.

[9]

Lai Q, Abrahams R, Yan W, Qiu C, Mutton P, Paradowska A, Soodi M. Compos B Eng 2017;130:174-91.

[10]

Wang H, Li H, Shi X, Liu X, Kong J, Zhou H. Ceram Int 2020;46:19537-44.

[11]
Zhang Y. Shaanxi university of science and Technology. M.S. Thesis. 2015.
[12]

Lin H, Feng J, Jiang Y, Yue C, Feng J. Aerosp. Mater. Technol. 2016;46:42-5.

[13]

Huang M, Li K, Li H, Fu Q, Wang Y, Lv X. J Mater Eng 2010:78-81.

[14]

Castanié S, Carlier T, Méar FO, Saitzek S, Blach J, Podor R, Montagne L. ACS Appl Mater Interfaces 2015;8:4208-15.

[15]

Zhao F, Fu Q, Wang L, He S. Ceram Int 2018;44:5440-6.

[16]

Wang K, Luo L, Lu Y, Yang J, Wang Y. Ceram Int 2015;41:7549-55.

[17]

Mei H, Xu Y, Tao J, Cheng L, Duo G. Adv. Appl. Ceram. 2016;115:322-6.

[18]

Shao G, Lu Y, Hanaor DAH, Cui S, Jiao J, Shen X. Corrosion Sci 2019;146:233-46.

[19]

Tan W, Adducci M, Petorak C, Thompson B, Brenner AE, Trice RW. J Eur Ceram Soc 2016;36:3833-41.

[20]

Tan W, Petorak CA, Trice RW. J Eur Ceram Soc 2014;34:1-11.

[21]

Deopa N, Kumar B, Sahu MK, Rani PR, Rao AS. J Non-Cryst Solids 2019;513:152-8.

[22]

Rudramamba KS, Krishna Reddy DV, Sambasiva Rao T, Taherunnisa SK, Veeraiah N, Rami Reddy M. Opt Mater 2019;89:68-79.

[23]

Shan X, Zhang Q, Xu Z. J Nanjing Univ Technol (Nat Sci Ed) 2004:31-4.

[24]

Mayerhöfer TG, Mutschke H, Popp J. ChemPhysChem 2016;17:1948-55.

[25]

Ni Y, Lu C, Zhang Y, Zhang Q, Xu Z. Chin J Process Eng 2006;6:777-80.

[26]

Tolochko NK, Khlopkov YV, Mozzharov SE, Titov VI, Ignatiev MB. Rapid Prototyp J 2000;6:155-61.

[27]

Zhang Q, Mu L, Huang Q, Fu Z. Opt Tech 2008:365-7.

[28]

Yan S, Dong S, Xu B, Wang Y, Fang J. Infrared Laser Eng 2014;43:2832-9.

[29]

Li Z, Li B, Bai P, Liu B, Wang Y. Materials 2018;11:1172.

[30]

Mccay M, Hopkins J, Mccay T. J Laser Appl 2002;14:24-30.

[31]

Tian P, Cheng J, Zhang G. Appl Surf Sci 2011;257:4896-900.

[32]

Cao W, Huang F, Ye R, Cai M, Lei R, Zhang J, Xu S, Zhang X. J Alloys Compd 2018;746:540-8.

[33]

Gökçe M, Burgaz G, Gökçe AG. J Lumin 2020;222:117175.

[34]

You H, Hayakawa T, Nogami M. J Non-Cryst Solids 2006;352:2778-82.

[35]

Qiu J, Miura K, Suzuki T, Mitsuyu T, Hirao K. Appl Phys Lett 1999;74:10-2.

[36]

Malchukova E, Boizot B, Petite G, Ghaleb D. J Lumin 2005;111:53-9.

[37]

Peng T, Chen C. Int. J. Precis. Eng. Manuf.-Green Technol. 2018;5:55-62.

[38]

Liu Y, Wang C, Li W, Yang X, Zhang Q, Cheng L, Zhang L. Appl Phys A 2014;116:1221-8.

[39]

Li J, Lu W, Luo Z, Zhao L. Aerosp. Mater. Technol. 2013;43:75-8.

Journal of Materiomics
Pages 417-426
Cite this article:
Wang H-H, Teng L, Kong J-A, et al. Enhancing anti-oxidation and thermal-radiation performance of the repaired borosilicate glass coating on C/C composites by Sm-doping. Journal of Materiomics, 2022, 8(2): 417-426. https://doi.org/10.1016/j.jmat.2021.07.005

329

Views

4

Crossref

5

Web of Science

9

Scopus

Altmetrics

Received: 25 February 2021
Revised: 01 July 2021
Accepted: 27 July 2021
Published: 30 July 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return