AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Opinion Paper | Open Access

Tungsten oxide thin films for highly sensitive triethylamine detection

Guanglu LeiaZishuo LiaGuocai LuaJinyuan HuaHaochuan ShangaXiaolei ZhangaXianghong Liua,b( )Jun Zhanga ( )Xiangxin Guoa
College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Metal oxide semiconductor (MOS) thin films are promising sensing layer for integration in gas sensor devices for detecting toxic and harmful molecules. Herein, tungsten oxide (WO3) thin films are deposited on interdigital electrodes by vacuum thermal evaporation to realize batch fabrication of high-performance gas sensors. Subsequent annealing at different temperatures allows for regulation of the concentration of oxygen vacancies in the WO3 films, which has been found to exert a great influence on the sensor properties. In addition, the surface structure of WO3 films is also highly dependent on the annealing temperature. Gas sensing investigations show that the WO3 sensor annealed at 500 °C possesses the best sensing properties for detecting triethylamine (TEA) including very high response, good selectivity, fast response, and low limit of detection (63 ppb). The excellent sensor performances are attributed to the enhanced adsorption of oxidative oxygen species due to the presence of abundant oxygen vacancies. The scalable fabrication of WO3 thin film gas sensors and the oxygen vacancy engineering strategy proposed herein may shed some light to developing high performance environmental sensors.

References

[1]

Hu Q, He J, Chang J, Gao J, Huang J, Feng L. ACS Appl Nano Mater 2020;3:9046-54.

[2]

Gandu B, Sandhya K, Gangagni Rao A, Swamy YV. Bioresour Technol 2013;139:155-60.

[3]

Li Z, Liu X, Zhou M, Zhang S, Cao S, Lei G, et al. J Hazard Mater 2021;415:125757.

[4]

Lou C, Yang C, Zheng W, Liu X, Zhang j, et al. Sens Actuators B Chem. 2021;329:129218.

[5]

Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J. ACS Appl Mater Interfaces 2020;12:20704-13.

[6]

Zheng L, Ma T, Zhao Y, Xu Y, Sun L, Zhang J, et al. Sens Actuators B Chem 2019;290:155-62.

[7]

Ma Y, Yang J, Yuan Y, Zhao H, Shi Q, Zhang F, et al. Langmuir 2017;33:8671-8.

[8]

Xu Y, Ma T, Zhao Y, Zheng L, Zhang J. Sens Actuators B Chem 2019;300:127042.

[9]

Xu Y, Lou C, Zheng L, Zheng W, Liu X, Kumar M, et al. Sens Actuators B Chem 2020;307:127616.

[10]

Li Y, Kong Y, Peng J, Yu C, Li Z, Li P, et al. J Materiomics 2019;5:413-21.

[11]

Lei G, Lou C, Liu X, Xie J, Li Z, Zheng W, et al. Sens Actuators B Chem 2021;341:129996.

[12]

Xu Y, Xie J, Zhang Y, Tian F, Yang C, Zheng W, et al. J Hazard Mater 2021;411:125120.

[13]

Shen C, Yan X, Qing F, Niu X, Stehle R, Mao SS, et al. J Materiomics 2019;5:463-70.

[14]

Afzal A. J Materiomics 2019;5:542-57.

[15]

Xu Y, Zheng W, Liu X, Zhang L, Zhang J. Mater Horizons 2020;7:1519-27.

[16]

Lou C, Wang K, Mei H, Xie J, Zhang J. CrystEngComm 2021;23:3654-63.

[17]

Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J. Sens Actuators B Chem. 2020;310:127846.

[18]

Sun F, Chen D, Gao X, Liu J-M. J Materiomics 2021;7:281-94.

[19]

Liu W, Wang H. J Materiomics 2020;6:385-96.

[20]

Chen X, Zhou Z, Lin Y-H, Nan C. J Materiomics 2020;6:494-512.

[21]

Liu X, Ma T, Pinna N, Zhang J. Adv Funct Mater 2017;27:1702168.

[22]

Ponzoni A, Comini E, Ferroni M, Sberveglieri G. Thin Solid Films 2005;490:81-5.

[23]

Horprathum M, Srichaiyaperk T, Samransuksamer B, Wisitsoraat A, Eiamchai P, Limwichean S, et al. ACS Appl Mater Interfaces 2014;6:22051-60.

[24]

Ali F, Pham ND, Fan L, Tiong V, Ostrikov K, Bell JM, et al. ACS Appl Energy Mater 2019;2:5456-64.

[25]

Shekhar CSP, Bhat N. RSC Adv 2018;8:6590-9.

[26]

Mirzaei A, Sang SK, Kim HW. J Hazard Mater 2018;357:314-31.

[27]

Shen S, Zhang X, Cheng X, Xu Y, Gao S, Zhao H, et al. ACS Appl Nano Mater 2019;2:8016-26.

[28]

Gong M, Li Y, Guo Y, Lv X, Dou X. Sens Actuators B Chem 2018;262:350-8.

[29]

Ryosuke K, Tetsuo K, Yuta K, Tetsuji Y, Nobuhiro M. RSC Adv 2018;8:23599-605.

[30]

Zheng W, Xu Y, Zheng L, Yang C, Pinna N, Liu X, et al. Adv Funct Mater 2020;30:2000435.

[31]

Li S, Yao Z, Zhou J, Zhang R, Shen H. Mater Lett 2017;195:213-6.

[32]

Hoel A, Reyes LF, Heszler P, Lantto V, Granqvist CG. Curr Appl Phys 2004;4:547-53.

[33]

Ye F, Lu D, Gui X, Wang T, Zhuang X, Luo W, et al. J Materiomics 2019;5:344-9.

[34]

Wang J, Chen Z, Zhai G, Men Y. Appl Surf Sci 2018;462:760-71.

[35]

Maffeis TGG, Yung D, LePennec L, Penny MW, Cobley RJ, Comini E, et al. Surf Sci 2007;601:4953-7.

[36]

Zhang Z, Wei HX, Ma GF, Li YQ. Appl Phys Lett 2013;103:133302.

[37]

Baek Y, Yong K. J Phys Chem C 2007;111:1213-8.

[38]

Xu Y, Zheng L, Yang C, Liu X, Zhang J. Sens Actuators B Chem 2020;304:127237.

[39]

Huang Y, Li K, Lin Y, Tong Y, Liu H. ChemCatChem 2018;10:1982-7.

[40]

Lee J-S, Mardare CC, Mardare AI, Hassel AW. ACS Comb Sci 2020;22:61-9.

[41]

K, Gelderman L, Lee SW, et al. J Chem Educ 2007;84:684-8.

[42]

Naatz H, Hoffmann R, Hartwig A, La Mantia F, Pokhrel S, Mädler L. J Phys Chem C 2018;122:2796-805.

[43]

Li Z, Lou C, Lei G, Lu G, Pan H, Liu X, et al. CrystEngComm 2021;23:5060.

[44]

Katoch A, Sun G-J, Choi S-W, Byun J-H, Kim SS. Sens Actuators B Chem 2013;185:411-6.

[45]

He R, Heyn W, Thiel F, Pérez N, Damm C, Pohl D, et al. J Materiomics 2019;5:15-33.

[46]

Barsan N, Weimar U. J Phys-Condes Matter 2003;15:3405-28.

[47]

Gui Y, Tian K, Liu J, Yang L, Wang Y. J Hazard Mater 2019;380:120876.

[48]

Zhai C, Zhu M, Jiang L, Yang T, Zhao Q, Luo Y, et al. Appl Surf Sci 2019;463:1078-84.

[49]

Zhai C, Luo Z, Liang X, Song X, Zhang M. J Alloys Compd 2020;857:157545.

[50]

Han Y, Liu Y, Su C, Chen X, Yang Z. Sens Actuators B Chem 2019;306:127536.

[51]

Gui Y, Yang L, Tian K, Zhang H, Fang S. Sens Actuators B Chem 2019;288:104-12.

[52]

Ying-Ming, Zhang, Xian-Fa, Zhao, Hui, Sui, et al. Sens Actuators B Chem 2015;308:406-14.

[53]

Takao Y, Nakanishi M, Kawaguchi T, Shimizu Y, Egashira M. Sens Actuators B Chem 1995;25:375-9.

[54]

Zhong Y, Li W, Zhao X, Jiang X, Lin S, Zhen Z, et al. ACS Appl Mater Interfaces 2019;11:13441-9.

[55]

Lou C, Huang Q, Li Z, Lei G, Liu X, Zhang J. Sens Actuators B Chem 2021;345:130429.

[56]

Li W, Cen Q, Li W, Zhao Z, Yang W, Li Y, et al. J Materiomics 2020;6:300-7.

[57]

Al-Hashem M, Akbar S, Morris P. Sens Actuators B Chem 2019;301:126845.

Journal of Materiomics
Pages 408-416
Cite this article:
Lei G, Li Z, Lu G, et al. Tungsten oxide thin films for highly sensitive triethylamine detection. Journal of Materiomics, 2022, 8(2): 408-416. https://doi.org/10.1016/j.jmat.2021.08.001

422

Views

9

Crossref

15

Web of Science

17

Scopus

Altmetrics

Received: 27 May 2021
Revised: 27 July 2021
Accepted: 01 August 2021
Published: 05 August 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return