AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Tetragonal (Ba, Ca) (Zr, Ti)O3 textured ceramics with enhanced piezoelectric response and superior temperature stability

Qiangwei KouaBin YangaYuan SunaShuai YangbLinjing LiuaHang XieaYunfei Changa( )Shantao ZhangcFei Lib
Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
Electronic Materials Research Laboratory (Key Lab of Education Ministry), State Key Laboratory for Mechanical Behavior of Materials and School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
National Laboratory of Solid State Microstructures and College of Engineering and Applied Science, Nanjing University, Nanjing, 210093, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Lead-free ceramics with both high piezoelectric response and good temperature stability are urgently demanded for electromechanical conversion devices. Unfortunately, owing to coexistence of polymorphic phases near room temperature (RT), enhanced piezoelectric properties were usually achieved with occurrence of strong temperature dependence in modified BaTiO3 (BT)-based ceramics. In this work, we demonstrate that tailoring grain orientations of tetragonal BT-based ceramics can effectively produce substantially enhanced and thermally stabilized piezoelectric response. Both <001>c- and <111>c-oriented tetragonal (Ba0.85Ca0.15) (Zr0.05Ti0.95)O3 (BCZT) ceramics with texture degrees F>90% were synthesized via templated grain growth. Interestingly, the ceramics textured along the <001>c polar axis show much higher microscopic and macroscopic piezoelectric properties than those with nonpolar <111>c texture, indicating an “extender” ferroelectricity nature. Compared with randomly oriented samples, the <001>c-oriented ceramics exhibit simultaneously ~1.6 times higher piezoelectric strain d33* (~760 pm/V), 4.4 times higher piezoelectric figure of merit d33×g33 (8.8 × 10−12 m2/N), and better temperature stability (strain variation ≤5% between RT and 110 °C). Such thermally stabilized strain response can be mainly attributed to wide temperature range of tetragonal phase and stable domain structure. This work provides a promising route for further developing lead-free piezoceramics with high and temperature-insensitive performance, which can greatly broaden their application areas.

References

[1]

Zhang SJ, Li F, Jiang XN, Kim JW, Luo J, Geng XC. Prog Mater Sci 2015;68:1-66. https://doi.org/10.1016/j.pmatsci.2014.10.002.

[2]

Gao XY, Yang JK, Wu JG, Xin XD, Li ZM, Yuan XT, Shen XY, Dong SX. Adv Mater Technol 2019;5:1900716. https://doi.org/10.1002/admt.201900716.

[3]

Sezer N, Koc M. Nano Energy 2021;80:105567. https://doi.org/10.1016/j.nanoen.2020.105567.

[4]

Wang Y, Wen XR, Jia YM, Huang M, Wang FF, Zhang XH, Bai YY, Yuan GL, Wang YJ. Nat Commun 2020;11:1328. https://doi.org/10.1038/s41467-020-15015-3.

[5]

Guo QH, Li F, Xia FQ, Wang PB, Gao XY, Hao H, Liu HX, Sun HJ, Zhang SJ. J Materiomics 2021;7:683-92. https://doi.org/10.1016/j.jmat.2020.11.012.

[6]

Cai K, Yan X, Deng PY, Jin L, Zeng F, Guo D. J Materiomics 2019;5:394-403. https://doi.org/10.1016/j.jmat.2019.04.005.

[7]

Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti GA, Jr, Rodel J. Appl Phys Rev 2017;4:041305. https://doi.org/10.1063/1.4990046.

[8]

Liu W, Ren X. Phys Rev Lett 2009;103:257602. https://doi.org/10.1103/PhysRevLett.103.257602.

[9]

Wang DW, Fan ZG, Rao GH, Wang G, Liu Y, Yuan CL, Ma T, Li DJ, Tan XL, Lu ZL, Feteira A, Liu SY, Zhou CR, Zhang SJ. Nano Energy 2020;76:104944. https://doi.org/10.1016/j.nanoen.2020.104944.

[10]

Zhao CL, Wu HJ, Li F, Cai YQ, Zhang Y, Song DS, Wu JG, Lyu X, Yin J, Xiao DQ, Zhu JG, Pennycook SJ. J Am Chem Soc 2018;140:15252-60. https://doi.org/10.1021/jacs.8b07844.

[11]

Zhu LF, Zhang BP, Zhao L, Li JF. J Mater Chem C 2014;2:4764-71. https://doi.org/10.1039/c4tc00155a.

[12]

Acosta M, Novak N, Jo W, Rodel J. Acta Mater 2014;80:48-55. https://doi.org/10.1016/j.actamat.2014.07.058.

[13]

Yang Y, Zhou YB, Ren J, Zheng QJ, Lam KH, Lin DM. J Eur Ceram Soc 2018;38:557-66. https://doi.org/10.1016/j.jeurceramsoc.2017.09.023.

[14]

Mayamae J, Vittayakorn W, Muanghlua R, Woramongkolchai S, Vittayakorn N. J Mater Sci 2017;52:6928-36. https://doi.org/10.1007/s10853-017-0906-z.

[15]

Yan XD, Zheng MP, Gao X, Zhu MK. Hou YD. J Mater Chem C 2020;8:13530-56. https://doi.org/10.1039/d0tc03461d.

[16]

Premkumar S, Radhakrishnan S, Mathe V L. J Mater Chem C 2021;9:4248-59. https://doi.org/10.1039/d0tc05724j.

[17]

Gao J, Ke X, Acosta M, Glaum J, Ren X. MRS Bull 2018;43:595-9. http://dx.doi.org/10.1557/mrs.2018.155.

[18]

Kim HT, Ji JH, Kim BS, Koh JH. Ceram Inter 2020;46:25050-7. https://doi.org/10.1016/j.ceramint.2020.06.291.

[19]

Alkathy MS, Raju KCJ. J Alloys Compd 2018;737:464-76. https://doi.org/10.1016/j.jallcom.2017.12.121.

[20]

Chitra, Khandelwal A, Gupta R, Laishram R, Singh K C. Ceram Inter 2019;45:10371-9. https://doi.org/10.1016/j.ceramint.2019.02.095.

[21]

Chen SB, Yang JY, Wu SY, Chen XM. J Materiomics 2021;7:1094-102. https://doi.org/10.1016/j.jmat.2021.01.012.

[22]

Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS. Crit Rev Solid State Mater Sci 2004;29:45-96. https://doi.org/10.1080/10408430490490905.

[23]

Moriana AD, Zhang SJ. J Materiomics 2018;4:277-303. https://doi.org/10.1016/j.jmat.2018.09.006.

[24]

Zhang HB, Xu PW, Patterson E, Zang JD, Jiang SL, Rodel J. J Eur Ceram Soc 2015;35:2501-12. https://doi.org/10.1016/j.jeurceramsoc.2015.03.012.

[25]

Li P, Zhai JW, Shen B, Zhang SJ, Li XL, Zhu FY, Zhang XM. Adv Mater 2018;30:1705171. https://doi.org/10.1002/adma.201705171.

[26]

Sun Y, Chang YF, Wu J, Liu YC, Jin L, Zhang ST, Yang B, Cao WW. J Mater Chem A 2019;7:3603-11. https://doi.org/10.1039/c8ta10312g.

[27]

Chang YF, Poterala SF, Yang ZP, Trolier-McKinstry S, Messing GL. Appl Phys Let 2009;95:230905. http://dx.doi.org/https://doi.org/10.1063/1.3271682.

[28]

Leng H, Yan Y, Liu H, Fanton M, Meyer RJ, Priya S. Acta Mater 2021;206:116610. https://doi.org/10.1016/j.actamat.2020.116610.

[29]

Davis M, Budimir M, Damjanovic D, Setter N. J Appl Phys 2007;101:054112. https://doi.org/10.1063/1.2653925.

[30]

Sun Y, Liu D, Li Q, Shim J, He W, Fang H, Yan Q. ACS Appl Mater Interfaces 2018;10:12847-53. https://doi.org/10.1021/acsami.8b01360.

[31]

Ge W, Luo C, Zhang Q, Devreugd CP, Ren Y, Li J, Luo H, Viehland D. J Appl Phys 2012;11:093508. https://doi.org/10.1063/1.4709619.

[32]

Chang YF, Wu J, Liu Z, Sun EW, Liu LJ, Kou QW, Li F, Yang B, Cao WW. ACS Appl Mater Interfaces 2020;12:38415-24. https://dx.doi.org/10.1021/acsami.0c11680.

[33]

Li JL, Shen ZH, Chen XH, Yang S, Zhou WL, Wang MW, Wang LH, Kou QW, Liu YC, Li Q, Xu Z, Chang YF, Zhang SJ, Li F. Nat Mater 2020;19:999-1005. https://doi.org/10.1038/s41563-020-0704-x.

[34]

Lotgering FK. J Inorg Nucl Chem 1959;9:113-23. https://doi.org/10.1016/0022-1902(59)80070-1.

[35]

Merz WJ. Phys Rev 1949;76:1221-5. https://doi.org/10.1103/PhysRev.76.1221.

[36]

Yu Z, Guo R, Bhalla AS, Appl Phys Lett 2000;77:1535. https://doi.org/10.1063/1.1308276.

[37]

Wang JJ, Wu PP, Ma XQ, Chen LQ, J Appl Phys 2010;108:114105. https://doi.org/10.1063/1.3504194.

[38]

Damjanovic D, Appl Phys Lett 2010;97:062906. https://doi.org/10.1063/1.3479479.

[39]

Li F, Zhang SJ, Xu Z, Wei XY, Luo J, Shrout TR, J Am Ceram Soc 2010;93:2731-4. https://doi.org/10.1111/j.1551-2916.2010.03760.x.

[40]

Wada S, Kakemoto H, Tsurumi T, Mater Trans 2004;45:178-87. https://doi.org/10.2320/matertrans.45.178.

[41]

Yan Y, Wang YU, Priya S, Appl Phys Lett 2012;100:192905. https://doi.org/10.1063/1.4712563.

[42]

Jin L, Li F, Zhang SJ. J Am Ceram Soc 2014;97:1-27. https://doi.org/10.1111/jace.12773.

[43]

Cao H, Fang B, Xu H, Luo H. Mater Res Bull 2002;37:2135-43. https://doi.org/10.1016/S0025-5408(02)00890-5.

[44]

Zhang SJ, Li F, Jiang XN, Kim J, Luo J, Geng X, Prog Mater Sci 2015;68:1-66. https://doi.org/10.1016/j.pmatsci.2014.10.002.

[45]

Li F, Jin L, Xu Z, Zhang SJ, Appl Phys Rev 2014;1:011103. https://doi.org/10.1063/1.4861260.

[46]

Morozov MI. CrystEngComm 2018;20:3409-18. https://doi.org/10.1039/C8CE00535D.

[47]

Guo L, Su B, Wang C, He X, Wang Z, Yang X, Long X, He C. J Appl Phys 2020;127:184104. https://doi.org/10.1063/5.0002672.

[48]

Damjanovic D, Budimir M, Davis M, Setter N, J Mater Sci 2006;41:65-76. https://doi.org/10.1007/s10853-005-5925-5.

[49]

Davis M, Damjanovic D, Hayem D, Setter N, J Appl Phys 2005;98:014102. https://doi.org/10.1063/1.1929091.

[50]

Li P, Fu Z, Wang F, Huan Y, Zhou Z, Zhai J, Shen B, Zhang S. Acta Mater 2020;199:542-50. https://doi.org/10.1016/j.actamat.2020.08.058.

Journal of Materiomics
Pages 366-374
Cite this article:
Kou Q, Yang B, Sun Y, et al. Tetragonal (Ba, Ca) (Zr, Ti)O3 textured ceramics with enhanced piezoelectric response and superior temperature stability. Journal of Materiomics, 2022, 8(2): 366-374. https://doi.org/10.1016/j.jmat.2021.08.006

326

Views

14

Crossref

22

Web of Science

25

Scopus

Altmetrics

Received: 22 July 2021
Revised: 20 August 2021
Accepted: 30 August 2021
Published: 02 September 2021
©2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return