Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Controlled manipulation of conductive ferroelectric domain walls and nanoscale domains in BiFeO3 thin films

Dongfeng Zhenga,bGuo Tiana()Yadong WangaWenda YangaLuyong ZhangaZoufei ChenaZhen FanaDeyang ChenaZhipeng HouaXingsen Gaoa()Qiliang LicJun-Ming Liua,d
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
Songshan Lake Materials Laboratory Dongguan, Guangdong, 523808, China
Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia, 22030, USA
Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Recently, there is a surge of research interest in configurable ferroelectric conductive domain walls which have been considered as possible fundamental building blocks for future electronic devices. In this work, by using piezoresponse force microscopy and conductive atomic force microscopy, we demonstrated the controlled manipulation of various conductive domain walls in epitaxial BiFeO3 thin films, e.g. neutral domain walls (NDW) and charged domain walls (CDWs). More interestingly, a specific type of nanoscale domains was also identified, which are surrounded by highly conductive circular CWDs. Similar nanoscale domains can also be controlled created and erasured by applying local field via conductive probe, which allow nondestructive current readout of different domain states with a large on/off resistance ratio up to 102. The results indicate the potential to design and develop high-density non-volatile ferroelectric memories by utilizing these programable conductive nanoscale domain walls.

References

[1]

Aird A, Salje EKH. J Phys Condens Matter 1998;10: 377-L380.

[2]

Zhang JX, Xiang B, He Q, Seidel J, Zeches RJ, Yu P, et al. Nat Nanotechnol 2011;6: 98-102.

[3]

Catalan G, Seidel J, Ramesh R, Scott JF. Rev Mod Phys 2012;84: 119-56.

[4]

Seidel J, Martin LW, He Q, Zhan Q, Chu YH, Rother A, et al. Nat Mater 2009;8: 229-34.

[5]

Seidel J, Maksymovych P, Batra Y, Katan A, Yang SY, He Q, et al. Phys Rev Lett 2010;105: 197603.

[6]

Holstad TS, Ræder TM, Evans DM, Smbrten DR, Krohns S, Schaab J, et al. npj Comput Mater 2020;6: 163.

[7]

Farokhipoor S, Noheda B. Phys Rev Lett 2011;107: 127601.

[8]

Sluka T, Tagantsev AK, Bednyakov P, Setter N. Nat Commun 2013;4: 1808.

[9]

Domingo N, Farokhipoor S, Santiso J, Noheda B, Catalan G. J Phys Condens Matter 2017;29: 334003.

[10]

Yang CH, Seidel J, Kim SY, Rossen PB, Yu P, Gajek M, et al. Nat Mater 2009;8: 485-93.

[11]

Crassous A, Sluka T, Tagantsev AK, Setter N. Nature Nanotech 2015;10: 614-8.

[12]

Farokhipoor S, Noheda B. J Appl Phys 2012;112: 052003.

[13]

Rojac T, Bencan A, Drazic G, Sakamoto N, Ursic H, Jancar B, et al. Nat Mater 2017;10: 322-7.

[14]

Očenášek J, Lu H, Bark CW, Eom CB, Alcalá J, Catalan G, et al. Phys Rev B 2015;92: 035417.

[15]

Lu H, Bark C-W, Ojos DEdl, Alcala J, Eom CB, Catalan G, et al. Sicence 2012;336: 59-61.

[16]

Tian G, Yang W, Song X, Zheng D, Zhang L, Chen C, et al. Adv Funct Mater 2019;29: 1807276.

[17]

Jiang AQ, Geng WP, Lv P, Hong J-W, Jiang J, Wang C, et al. Nat Mater 2020;19: 1188-94.

[18]

Sharma P, Zhang Q, Sando D, Lei CH, Liu Y, Li J, et al. Sci Adv 2017;23: e1700512.

[19]

Balke N, Choudhury S, Jesse S, Huijben M, Chu YH, Baddorf AP, et al. Nat Nanotechnol 2009;4: 868-75.

[20]

Rodriguez BJ, Chu YH, Ramesh R, Kalinin SV. Appl Phys Lett 2008;93: 142901.

[21]

Chen D, Chen Z, He Q, Clarkson JD, Serrao CR, Yadav AK, et al. Nano Lett 2017;17: 486-93.

[22]

Chiu YP, Chen YT, Huang BC, Shih MC, Yang JC, He Q, et al. Adv Mater 2011;23: 1530-4.

[23]

Liu L, Xu K, Li Q, et al. Adv Funct Mater 2021;31(1): 2005876.

[24]

Maksymovych P, Morozovska AN, Yu P, Eliseev EA, Chu Y-H, Ramesh R, et al. Nano Lett 2012;12: 209-13.

[25]

Heron JT, Bosse JL, He Q, Gao Y, Trassin M, Ye L, et al. Nature 2014;516: 370-3.

[26]

Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ. Rep Prog Phys 2010;73: 056502.

[27]

Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, et al. Sci Adv 2017;4: e1700919.

[28]

Vasudevan RK, Morozovska AN, Eliseev EA, Britson J, Yang JC, Chu YH, et al. Nano Lett 2012;12: 5524-31.

[29]

Guyonnet J, Gaponenko I, Gariglio S, Paruch P. Adv Mater 2011;23: 5377-82.

Journal of Materiomics
Pages 274-280
Cite this article:
Zheng D, Tian G, Wang Y, et al. Controlled manipulation of conductive ferroelectric domain walls and nanoscale domains in BiFeO3 thin films. Journal of Materiomics, 2022, 8(2): 274-280. https://doi.org/10.1016/j.jmat.2021.10.003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return