AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

High temperature co-firing of 3D-printed AlZnO/Al2O3 multi-material two-phase flow sensor

Danwei Zhanga,b,1Win Jonhsona,1Tun Seng HerngaXi Xua,cXiaojing LiudLiang-ming Pane( )Hui Hed( )Jun Dinga( )
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, 138635, Singapore
Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
Key Laboratory of Low-Grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China

]]>

Show Author Information

Graphical Abstract

Abstract

Sensors are crucial in the understanding of machines working under high temperatures and high-pressure conditions. Current devices utilize polymeric materials as electrical insulators which pose a challenge in the device's lifespan. Ceramics, on the other hand, is robust and able to withstand high temperature and pressure. For such applications, a co-fired ceramic device which can provide both electrical conductivity and insulation is beneficial and acts as a superior candidate for sensor devices. In this paper, we propose a novel fabrication technique of complex multi-ceramics structures via 3D printing. This fabrication methodology increases both the geometrical complexity and the device's shape precision. Structural ceramics (alumina) was employed as the electrical insulator whilst providing mechanical rigidity while a functional ceramic (alumina-doped zinc oxide) was employed as the electrically conductive material. The addition of sintering additives, tailoring the printing pastes' solid loadings and heat treatment profile resolves multi-materials printing challenges such as shrinkage disparity and densification matching. Through high-temperature co-firing of ceramics (HTCC) technology, dense high quality functional multi-ceramics structures are achieved. The proposed fabrication methodology paves the way for multi-ceramics sensors to be utilized in high temperature and pressure systems in the near future.

References

[1]

Bandyopadhyay A, Heer B. Mater Sci Eng R Rep 2018;129: 1-16.

[2]

Banea MD, Rosioara M, Carbas RJC, da Silva LFM. Compos B Eng 2018;151: 71-7.

[3]

Reincke T, Hartwig S, Dilger K. Int J Adhesion Adhes 2019;93: 102321.

[4]

Sankaranarayanan R, Hynes NRJ. AIP Conf Proc 2018;1953(1): 130021.

[5]

Sun Z, Karppi R. J Mater Process Technol 1996;59(3): 257-67.

[6]

Kah P, Shrestha M, Martikainen J. Trans Tech Publ 2014.

[7]

James MN. Eng Fail Anal 2011;18(8): 1909-20.

[8]

Das R, Cleary PW. J Comput Sci 2016;16: 200-16.

[9]
MacDonald E, Wicker R. Science 2016;353: 6307. aaf2093.
[10]
Salonitis, K., J. Pandremenos, J. Paralikas, and G. Chryssolouris. 2009. Dordrecht: Springer [Netherlands].
[11]
Conner, B.P., G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan, and J.W.J.A.M. Limperos, 2014. 1: p. 64-76.
[12]

Tee YL, Peng C, Pille P, Leary M, Tran P. JOM 2020;72(3): 1105-17.

[13]

Mayyas M. Progress in additive manufacturing. 2021.

[14]
Skylar-Scott, M.A., J. Mueller, C.W. Visser, and J.A.J.N. Lewis, 2019. 575(7782): p. 330-335.
[15]

Ziaee M, Crane NB. Addit Manuf 2019;28: 781-801.

[16]
Freund R, Watschke H, Heubach J, Vietor T. Appl Sci 2019: 9. 9.
[17]

Peng E, Zhang D, Ding J. Adv Mater 2018;30(47): 1802404.

[18]
3 DCeram. C900 HYBRID. Available from, https://3dceram.com/imprimante-3d/c900-hybrid-en/; 2021.
[19]
Lithoz. Ceramic 3D printers. Available from, https://www.lithoz.com/en/our-products/3D-printers; 2021.
[20]

Kwon D-K, Lanagan MT, Shrout TR. J Am Ceram Soc 2005;88(12): 3419-22.

[21]

Imanaka Y. Springer science & business media. 2005.

[22]

Ma M, Khan H, Shan W, Wang Y, Ou JZ, Liu Z, Kalantar-zadeh K, Li Y. Sensor Actuator B Chem 2017;239: 711-7.

[23]

Yang W, Yang Y, Che W, Fan C, Xue Q. IEEE Trans Antenn Propag 2017;65(8): 4328-33.

[24]

Horváth E. J Therm Anal Calorim 2013;114(1): 277-84.

[25]

Danforth S. Mater Technol 1995;10(7-8): 144-6.

[26]

Safari A, Akdogan EK. Ferroelectrics 2006;331(1): 153-79.

[27]

Agarwala M, Bandyopadhyay A, Weeren RV, Safari A, Danforth S, Langrana N, Jamalabad V, Whalen P. Am Ceram Soc Bull 1996: 75.

[28]

Sturesson P, Khaji Z, Knaust S, Klintberg L, Thornell G. J Micromech Microeng 2015: 25.

[29]

Xiong J-j, Zheng S-j, Hong Y-p, Li J, Wang Y-l, Wang W, Tan Q. J Zhejiang Univ - Sci C 2013: 14.

[30]

Xing H, Zou B, Liu X, Wang X, Huang C, Hu Y. J Eur Ceram Soc 2020;40(15): 5797-809.

[31]

Raynaud J, Pateloup V, Bernard M, Gourdonnaud D, Passerieux D, Cros D, Madrangeas V, Michaud P, Chartier T. J Eur Ceram Soc 2021;41(3): 2023-33.

[32]
Cesarano, J., B.H. King, and H.B. Denham, 1998.
[33]

Xu X, Xiao S, Willy HJ, Xiong T, Borayek R, Chen W, Zhang D, Ding J. Appl Catal B Environ 2020;262: 118307.

[34]

Rocha VG, Saiz E, Tirichenko IS, García-Tuñón E. J Mater Chem 2020;8(31): 15646-57.

[35]

Rocha VG, García-Tuñón E, Botas C, Markoulidis F, Feilden E, D'Elia E, Ni N, Shaffer M, Saiz E. ACS Appl Mater Interfaces 2017;9(42): 37136-45.

[36]

Smay JE, Nadkarni SS, Xu J. Int J Appl Ceram Technol 2007;4(1): 47-52.

[37]

Zhang D, Jonhson W, Herng TS, Ang YQ, Yang L, Tan SC, Peng E, He H, Ding J. Mater Horiz 2020;7(4): 1083-90.

[38]

Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, Cabeza LF. Renew Sustain Energy Rev 2010;14(1): 31-55.

[39]
Ginoux, J.J., 1978.
[40]

Hidrovo CH, Kramer TA, Wang EN, Vigneron S, Steinbrenner JE, Koo J-M, Wang F-M, Fogg DW, Flynn RD, Lee ES, Cheng C-H, Kenny TW, Eaton JK, Goodson KE. Heat Tran Eng 2006;27(4): 53-63.

[41]

Mandel RK, Bae DG, Ohadi MM. J Electron Packag 2018;3: 140.

[42]

Fernandes FAN, Ferrareso Lona LM. J Appl Polym Sci 2001;81(2): 321-32.

[43]

Chen Y, Yang K-S, Chang Y-J, Wang C-C. Int J Multiphas Flow 2001;27(7): 1293-9.

[44]

Kickhofel J, Yang J, Prasser H-M. Nucl Eng Des 2018;336: 122-8.

[45]

Choi Y-J, Park J-H, Ko W-J, Hwang I-S, Park J-H, Park J-G, Nahm S. J Am Ceram Soc 2006;89(2): 562-7.

[46]

Yang H, Lim JC, Liu Y, Qi X, Yap YL, Dikshit V, Yeong WY, Wei J. Virtual Phys Prototyp 2017;12(1): 95-103.

[47]

Highley CB, Rodell CB, Burdick JA. Adv Mater 2015;27(34): 5075-9.

[48]

Allahverdi M, Danforth SC, Jafari M, Safari A. J Eur Ceram Soc 2001;21(10): 1485-90.

[49]

Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA. Adv Mater 2014;26(36): 6307-12.

[50]

Zhao J, Hussain M, Wang M, Li Z, He N. Addit Manuf 2020;32: 101097.

[51]

Ten Kate J, Smit G, Breedveld P. Disabil Rehabil Assist Technol 2017;12(3): 300-14.

[52]

Zhang D, Peng E, Borayek R, Ding J. Adv Funct Mater 2019;29(12): 1807082.

[53]
Matweb. CeramTec Rubalit® A 1894 Alumina, 94%. Available from, http://www.matweb.com/search/datasheet; 2021.
[54]

Yang QQ, Meng B, Lin ZL, Zhu XK, Yang F, Wu S. Ionics 2017;23(4): 967-75.

Journal of Materiomics
Pages 710-718
Cite this article:
Zhang D, Jonhson W, Herng TS, et al. High temperature co-firing of 3D-printed AlZnO/Al2O3 multi-material two-phase flow sensor. Journal of Materiomics, 2022, 8(3): 710-718. https://doi.org/10.1016/j.jmat.2021.10.004

354

Views

9

Crossref

11

Web of Science

11

Scopus

Altmetrics

Received: 05 August 2021
Revised: 11 October 2021
Accepted: 20 October 2021
Published: 09 November 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return