AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

An effective artificial layer boosting high-performance all-solid-state lithium batteries with high coulombic efficiency

Jianli WangZhao ZhangHangjun YingShunlong ZhangHui TanGaorong Han( )Wei-Qiang Han( )
School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

All-solid-state lithium batteries (ASSLBs) employ high-capacity lithium (Li) metal as the anode and exhibit a higher energy density than that of conventional Li-ion batteries. However, the problems arose from the Li dendrites induce severely parasitic reaction between Li and electrolytes, leading to low coulombic efficiency (CE) and poor cyclic stability. Herein, a poly(vinylidene-co-hexafluoropropylene)/lithium nitrate (PVDF-HFP/LiNO3, marked as PFH/LN) artificial layer is employed to modified Li and achieve high CE ASSLBs with polyethylene oxide-Li6.4La3Zr1.4Ta0.6O12 (PEO-LLZTO) electrolyte. LN serves as a functionalized additive to facilitate the formation of a robust solid electrolyte interface (SEI), efficiently suppressing the formation of Li dendrites. Additionally, LN as a "binder" effectively links PFH with Li, providing good contact. PFH possesses high mechanical strength and moderate flexibility, which can not only physically inhibit the growth of Li dendrites, but also maintain the structural integrity of artificial layer over long-term cycles. Finally, Li/Li cells with such artificial layer demonstrate ultralong cycle life of 1800 and 1000 h under 0.2 and 0.4 mA cm−1, respectively. Furtherly, high CE can be achieved when applied in both LiFePO4 full cells and Li-Cu half cells. This work offers a facile and efficient strategy to greatly promote CE in PEO-based ASSLBs.

References

[1]

Xia S, Wu X, Zhang Z, Cui Y, Liu W. Chem 2019;5: 753-85.

[2]

Manthiram A, Yu X, Wang S. Nat Rev Mater 2017;2: 16103.

[3]

Wang S, Fang R, Li Y, Liu Y, Xin C, Richter FH, Nan C-W. J Materiomics 2021;7: 209-18.

[4]

Zheng F, Kotobuki M, Song S, Lai MO, Lu L. J Power Sources 2018;389: 198-213.

[5]

Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y. Adv Mater 2018;30: 1705702.

[6]

Xiao R, Li H, Chen L. J Materiomics 2015;1: 325-32.

[7]

Xue Z, He D, Xie X. J Mater Chem A 2015;3: 19218-53.

[8]

Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. J Am Chem Soc 2016;138: 9385-8.

[9]

Yue J, Yan M, Yin Y-X, Guo Y-G. Adv Funct Mater 2018;28: 1707533.

[10]

Liu H, Cheng X-B, Huang J-Q, Yuan H, Lu Y, Yan C, Zhu G-L, Xu R, Zhao C-Z, Hou L-P, He C, Kaskel S, Zhang Q. ACS Energy Lett 2020;5: 833-43.

[11]

Wang Z, Chen S, Huang Z, Wei Z, Shen L, Gu H, Xu X, Yao X. J Materiomics 2019;5: 195-203.

[12]

Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Adv Energy Mater 2019;9: 1804004.

[13]

Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB. Nanomater Energy 2018;46: 176-84.

[14]

Chen W, Xiong X, Zeng R, Jiang L, Chen Z, Xiao Z, Qie L, Yu F, Huang Y. ACS Appl Energy Mater 2020;3: 7200-7.

[15]

Cai D, Wang D, Chen Y, Zhang S, Wang X, Xia X, Tu J. Chem Eng J 2020;394: 124993.

[16]

Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Matter 2020;3: 57-94.

[17]

Yang X, Gao X, Zhao C, Sun Q, Zhao Y, Adair K, Luo J, Lin X, Liang J, Huang H, Zhang L, Lu S, Li R, Sun X. Energy Storage Mater 2020;27: 198-204.

[18]

Yan M, Liang J-Y, Zuo T-T, Yin Y-X, Xin S, Tan S-J, Guo Y-G, Wan L-J. Adv Funct Mater 2019;30: 1908047.

[19]

Wang C, Wang T, Wang L, Hu Z, Cui Z, Li J, Dong S, Zhou X, Cui G. Adv Sci 2019;6: 1901036.

[20]

Eshetu GG, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez LM, Zhang H, Armand M. Angew Chem Int Ed 2017;56: 15368-72.

[21]

Yang Z, Yuan H, Zhou C, Wu Y, Tang W, Sang S, Liu H. Chem Eng J 2020;392: 123650.

[22]

Li N-W, Yin Y-X, Yang C-P, Guo Y-G. Adv Mater 2016;28: 1853-8.

[23]

Chen H, Pei A, Lin D, Xie J, Yang A, Xu J, Lin K, Wang J, Wang H, Shi F, Boyle D, Cui Y. Adv Energy Mater 2019;9: 1900858.

[24]

Wang J, Yan X, Zhang Z, Guo R, Ying H, Han G, Han W-Q. ACS Appl Mater Interfaces 2020;12: 41323-32.

[25]

Liang X, Wen ZY, Liu Y, Wu MF, Jin J, Zhang H, Wu XW. J Power Sources 2011;196: 9839-43.

[26]

Zhang SS. Electrochim Acta 2012;70: 344-8.

[27]

Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J. J Electrochem Soc 2009;156: A694-702.

[28]

Wang J, Zhang Z, Ying H, Han G, Han W-Q. Chem Eng J 2021;411: 128534.

[29]

Sang LZ, Bassett KL, Castro FC, Young MJ, Chen L, Haasch RT, Elam JW, Dravid VP, Nuzzo RG, Gewirth AA. Chem Mater 2018;30: 8747-56.

[30]

Bouchet R, Lascaud S, Rosso M. J Electrochem Soc 2003;150: A1385-9.

[31]

Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Chem 2019;5: 2326-52.

[32]

Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C-W. Adv Mater 2019;31: 1806082.

[33]

Li Y, Sun Z, Liu D, Lu S, Li F, Gao G, Zhu M, Li M, Zhang Y, Bu H, Jia Z, Ding S. Energy Environ Mater 2020;4: 434-43.

[34]

Xu R, Zhang X-Q, Cheng X-B, Peng H-J, Zhao C-Z, Yan C, Huang J-Q. Adv Funct Mater 2018;28: 1705838.

[35]

Deng K, Han D, Ren S, Wang S, Xiao M, Meng Y. J Mater Chem A 2019;7: 13113-9.

[36]

Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H. Nanomater Energy 2019;63: 103895.

[37]

Mathew DE, Gopi S, Kathiresan M, Stephan AM, Thomas S. Electrochim Acta 2019;319: 189-200.

[38]

Wang H, Matsui M, Kuwata H, Sonoki H, Matsuda Y, Shang X, Takeda Y, Yamamoto O, Imanishi N. Nat Commun 2017;8: 15106.

[39]

Xu C, Sun B, Gustafsson T, Edstrom K, Brandell D, Hahlin M. J Mater Chem A 2014;2: 7256-64.

[40]

Dedryvere R, Laruelle S, Grugeon S, Gireaud L, Tarascon JM, Gonbeau D. J Electrochem Soc 2005;152: A689-96.

[41]

Simon FJ, Hanauer M, Richter FH, Janek J. ACS Appl Mater Interfaces 2020;12: 11713-23.

[42]

Sun J, Yao X, Li Y, Zhang Q, Hou C, Shi Q, Wang H. Adv Energy Mater 2020;10: 2000709.

[43]

Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough JB. Nano Lett 2018;18: 7414-8.

[44]

Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C. Sci Adv 2018;4: aau9245.

[45]

Fan X, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J, Xu K, Wang C. Chem 2018;4: 174-85.

[46]

Yu J, Kwok SCT, Lu Z, Effat MB, Lyu Y-Q, Yuen MMF, Ciucci F. Chemelectrochem 2018;5: 2873-81.

[47]

Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan C-W, Shen Y. J Am Chem Soc 2017;139: 13779-85.

[48]

Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Chem Mater 2016;28: 266-73.

[49]

Li T, Zhang X-Q, Shi P, Zhang Q. Joule 2019;3: 2647-61.

[50]

Ping WW, Wang CW, Lin ZW, Hitz E, Yang CP, Wang H, Hu LB. Adv Energy Mater 2020;10: 2000702.

[51]

Chi S-S, Liu Y, Zhao N, Guo X, Nan C-W, Fan L-Z. Energy Storage Mater 2019;17: 309-16.

[52]

Guo Y, Niu P, Liu Y, Ouyang Y, Li D, Zhai T, Li H, Cui Y. Adv Mater 2019;31: 1900342.

[53]

Pei A, Zheng GY, Shi FF, Li YZ, Cui Y. Nano Lett 2017;17: 1132-9.

[54]

Yan K, Wang JY, Zhao SQ, Zhou D, Sun B, Cui Y, Wang GX. Angew Chem Int Ed 2019;58: 11364-8.

[55]

Adams BD, Carino EV, Connell JG, Han KS, Cao RG, Chen JZ, Zheng JM, Li QY, Mueller KT, Henderson WA, Zhang JG. Nanomater Energy 2017;40: 607-17.

[56]

Fu JL, Ji X, Chen J, Chen L, Fan XL, Mu DB, Wang CS. Angew Chem Int Ed 2020;59: 22194-201.

Journal of Materiomics
Pages 257-265
Cite this article:
Wang J, Zhang Z, Ying H, et al. An effective artificial layer boosting high-performance all-solid-state lithium batteries with high coulombic efficiency. Journal of Materiomics, 2022, 8(2): 257-265. https://doi.org/10.1016/j.jmat.2021.10.006

355

Views

3

Crossref

8

Web of Science

7

Scopus

Altmetrics

Received: 10 September 2021
Revised: 25 October 2021
Accepted: 26 October 2021
Published: 01 November 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return