AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Homogenous Sn-doped K(Ta, Nb)O3 single crystals and its high piezoelectric response

Fengying LiuaYuanyuan ZhangbLimei ZhengaGang TianaJuan DucLe ZhaodXudong ChenaXuping Wangb( )Minglei Zhaoa
School of Physics, Shandong University, Jinan, 250100, China
Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
College of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, China
School of Electronic and Information Engineering Department of Physics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Perovskite K(Ta, Nb)O3 (KTN) single crystal has drawn great interests for its outstanding electro-optic performance and excellent piezoelectric response. However, growth of compositionally uniform KTN single crystals has always been a great challenge for the great segregation difference between Nb and Ta. In this work, we propose a thermal field optimization strategy to resolve this challenge. Homogenous Sn doped KTN (Sn: KTN) single crystal with significantly reduced composition gradient (0.003 mol/mm, 1/4–1/8 of other KTN system), minimal TC variation (13 ℃) and excellent piezoelectric and dielectric response (d33 = 373 pC/N and ε33T = 5206) has been successfully achieved. We found that the functional properties of Sn: KTN were greatly affected by the near-room temperature tetragonal-cubic phase transition. From the intrinsic aspect, longitudinal lattice deformation becomes much easier, resulting in maximum piezoelectric (d33*), dielectric (ε33T*), elastic (s33E*)and electromechanical coupling (k33*) coefficients along polar direction [001]C. From the extrinsic aspect, both domain wall density and domain wall mobility are greatly improved for the reduced lattice distortion, which also contribute a lot to the functional properties. This work provides a simple and practical route for designing and growing high quality crystals, and more importantly, reveals the fundamental mechanism of the phase transitions/boundaries on the functional properties.

References

[1]

Wu H, Zhu J, Zhang T-Y. Nanomater Energy 2015;16: 419-27.

[2]

Khassaf H, Mantese JV, Bassiri-Gharb N, Kutnjak Z, Alpay SP. J Mater Chem C 2016;4(21): 4763-9.

[3]

Zhang X, He S, Zhao Z, Wu P, Wang X, Liu H. Sci Rep 2018;8(1): 2892.

[4]

Zheng T, Wu J, Xiao D, Zhu J. Prog Mater Sci 2018;98: 552-624.

[5]

Li F, Lin D, Chen Z, et al. Nat Mater 2018;17(4): 349-54.

[6]

Zhang S, Li F. J Appl Phys 2012;111(3).

[7]

Wang F. Phys Rev B 1998;59: 9733-6.

[8]

Li F, Cabral MJ, Xu B, et al. Science 2019;364(6437): 264-8.

[9]

Kim H, Lee G, Cho J, et al. J Materiomics 2021;7(4): 693-8.

[10]

Luo C, Karaki T, Yamashita Y, Xu J. J Materiomics 2021;7(3): 621-8.

[11]

He S, Zhang Z, Liu H, et al. APEX 2019;12(7).

[12]

Damjanovic D. Appl Phys Lett 2010;97(6).

[13]

Liu G, Kong L, Hu Q, Zhang S. Appl Phys Rev 2020;7(2).

[14]

Lv X, Zhu J, Xiao D, Zhang XX, Wu J. Chem Soc Rev 2020;49(3): 671-707.

[15]

Budimir M, Damjanovic D, Setter N. J Appl Phys 2003;94(10): 6753-61.

[16]

Wang L, Zhai Y, Zheng L, et al. Appl Phys Lett 2020;117(5).

[17]

Liu H, Chen J pl, Huang H, et al. Phys Rev Lett 2018;120(5): 055501.

[18]

Zhao C, Wu H, Li F, et al. J Am Chem Soc 2018;140(45): 15252-60.

[19]

Li C, Wang X, Wu Y, et al. Light Sci Appl 2020;9(1): 193.

[20]

Wang Y, Meng X, Tian H, et al. Cryst Growth Des 2019;19(2): 1041-7.

[21]

Chang YC, Wang C, Yin SZ, Hoffman RC, Mott AG. Opt Lett 2013;38(22): 4574-7.

[22]

Huang F, Hu C, Tian H, Meng X, Tan P, Zhou Z. Cryst Growth Des 2019;19(9): 5362-8.

[23]

Tian H, Yao B, Tan P, et al. Appl Phys Lett 2015;106(10).

[24]

Tian H, Hu C, Meng X, et al. Cryst Growth Des 2015;15(3): 1180-5.

[25]

Wang X, Wang J, Yu Y, Zhang H, Boughton RI. J Cryst Growth 2006;293(2): 398-403.

[26]

Huang F, Hu C, Zhou Z, et al. Acta Mater 2020;200: 24-34.

[27]

Zhang Y, Li S, Liu F, Wang L, Wang X, Zheng L, Yang L, Lv X, Yu H, Liu B, Zhao M. J Am Chem Soc 2021;104: 5182-91.

[28]

Meng X, Tian H, Hu C, et al. J Alloys Compd 2019;773: 21-6.

[29]

Tian H, Tan P, Meng X, et al. J Mater Chem C 2015;3: 10968-73.

[30]

Zheng L, Li S, Sang S, et al. Appl Phys Lett 2014;105(21): 212902.

[31]

Yu H, Xiao H, Wang B, et al. J Eur Ceram Soc 2017;37: 2057-65.

[32]

Shannon RD. Acta Crystallogr A 1976;32: 751-67.

[33]

Wang J, Zheng L, Yang B, et al. Appl Phys Lett 2015;107(7): 072902.

[34]

Xue H, Zheng T, Wu J. ACS Appl Mater Interfaces 2020;12(29): 32925-34.

[35]

Chen C, Zhao X, Wang Y, et al. Appl Phys Lett 2016;108(2).

[36]

Zheng L, Jing Y, Lu X, et al. Phys Rev B 2016;93(9).

[37]

Damjanovic D. J Am Ceram Soc 2005;88(10): 2663-76.

[38]

Bennett J, Shrout TR, Zhang SJ, et al. J Appl Phys 2014;116(9).

[39]

Peng B, Yue Z, Li L. J Appl Phys 2011;109(5).

[40]

Huo X, Zhang R, Zheng L, et al. J Am Ceram Soc 2015;98(6): 1829-35.

[41]

Damjanovic D, Brem F, Setter N. Appl Phys Lett 2002;80(4): 652-4.

[42]

Zhang H, Lu X, Wang C, Zheng L, Yang B, Cao W. Phys Rev B 2018;97(5).

[43]

Wang DW, Fan ZM, Rao GH, et al. Nanomater Energy 2020;76: 9.

[44]

Zheng L, Jing Y, Lu X, et al. Appl Phys Lett 2018;113(10).

[45]

Yang L, Zheng L, Jing Y, et al. Phys Status Solidi B 2017;254(7).

[46]

Chen L-Q. J Am Ceram Soc 2008;91(6): 1835-44.

[47]

Fan L, Chen J, Ren Y, Pan Z, Zhang L, Xing X. Phys Rev Lett 2016;116(2): 027601.

[48]

Liu H, Chen J, Fan L, et al. Chem Mater 2017;29(14): 5767-71.

Journal of Materiomics
Pages 702-709
Cite this article:
Liu F, Zhang Y, Zheng L, et al. Homogenous Sn-doped K(Ta, Nb)O3 single crystals and its high piezoelectric response. Journal of Materiomics, 2022, 8(3): 702-709. https://doi.org/10.1016/j.jmat.2021.11.001

315

Views

10

Crossref

8

Web of Science

8

Scopus

Altmetrics

Received: 12 August 2021
Revised: 18 October 2021
Accepted: 04 November 2021
Published: 13 November 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return