AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Crystal structure guided machine learning for the discovery and design of intrinsically hard materials

Russlan JaafrehaTamer AbuhmedbJung-Gu KimaKotiba Hamada( )
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
College of Computing and Informatics, Sungkyunkwan University, Suwon, 16419, South Korea

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

In this work, a machine learning (ML) model was created to predict intrinsic hardness of various compounds using their crystal chemistry. For this purpose, an initial dataset, containing the hardness values of 270 compounds and counterpart applied loads, was employed in the learning process. Based on various features generated using crystal information, an ML model, with a high accuracy (R2 = 0.942), was built using extreme gradient boosting (XGB) algorithm. Experimental validations conducted by hardness measurements of various compounds, including MSi2 (M = Nb, Ce, V, and Ta), Al2O3, and FeB4, showed that the XGB model was able to reproduce load-dependent hardness behaviors of these compounds. In addition, this model was also used to predict the behavior based on prototype crystal structures that are randomly substituted with elements.

References

[1]

Xiaoguang L, Luyan L, Weihua W, Yongjun T. J Appl Phys 2011;109(2). https://doi.org/10.1063/1.3544070.

[2]
Delavignette P. J Phys Colloq 1974;35(C7). https://doi.org/10.1051/jphyscol:1974720. C7-181-C7-188.
[3]

Gu Q, Krauss G, Steurer W. Adv Mater 2008;20(19): 3620-6. https://doi.org/10.1002/adma.200703025.

[4]

Zhang X, Wang Y, Lv J, et al. J Chem Phys 2013;138(11). https://doi.org/10.1063/1.4794424.

[5]

Andrievski RA. Int J Refract Met Hard Mater 2001;19(4-6): 447-52. https://doi.org/10.1016/S0263-4368(01)00023-3.

[6]

Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Nature 2018;559(7715): 547-55. https://doi.org/10.1038/s41586-018-0337-2.

[7]

Chibani S, Coudert F-X. 2020;8(8): 80701. doi: 10.1063/5.0018384.

[8]

Mansouri Tehrani A, Oliynyk AO, Parry M, et al. J Am Chem Soc 2018;140(31): 9844-53. https://doi.org/10.1021/jacs.8b02717.

[9]

Zhang Z, Mansouri Tehrani A, Oliynyk AO, Day B, Brgoch J. Adv Mater 2021;33(5): 1-8. https://doi.org/10.1002/adma.202005112.

[10]

Ward L, Liu R, Krishna A, et al. Phys Rev B 2017;96(2): 1-12. https://doi.org/10.1103/PhysRevB.96.024104.

[11]

Zhang Z, Brgoch J. J Phys Chem Lett 2021;12(29): 6760-6.

[12]

Kirklin S, Saal JE, Meredig B, et al. npj Comput Mater 2015;1(November). https://doi.org/10.1038/npjcompumats.2015.10.

[13]

Zagorac D, Muller H, Ruehl S, Zagorac J, Rehme S. J Appl Crystallogr 2019;52: 918-25. https://doi.org/10.1107/S160057671900997X.

[14]

Jain A, Ong SP, Hautier G, et al. Apl Mater 2013;1(1). https://doi.org/10.1063/1.4812323.

[16]

Masood Chaudry U, Hamad K, Abuhmed T. Mater Today Commun 2021;26(November 2020): 101897. https://doi.org/10.1016/j.mtcomm.2020.101897.

[17]

Bergstra J, Bengio Y. J Mach Learn Res 2012;13: 281-305.

[18]

Chen T, Guestrin C. Proc ACM SIGKDD Int Conf Knowl Discov Data Min 2016: 785-94. https://doi.org/10.1145/2939672.2939785.

[19]

Altmann A, Toloşi L, Sander O, Lengauer T. Bioinformatics 2010;26(10): 1340-7. https://doi.org/10.1093/bioinformatics/btq134.

[20]

Wang Q, He J, Hu W, et al. J Mater 2015;1(1): 45-51. https://doi.org/10.1016/j.jmat.2015.03.004.

[21]

Kucharski S, Jarząbek D, Piątkowska A, Woźniacka S. Exp Mech 2016;56(3): 381-93. https://doi.org/10.1007/s11340-015-0105-2.

[22]

Camacho-García JH, Moreno-Hernández JC, Ruiz-Peralta ML, Bautista-Hernandez A. Escobedo-morales A. Mater Res Express 2019;6(4). https://doi.org/10.1088/2053-1591/aafae5.

[23]

Nino A, Tanaka A, Sugiyama S, Taimatsu H. Mater Trans 2010;51(9): 1621-6. https://doi.org/10.2320/matertrans.M2010110.

Journal of Materiomics
Pages 678-684
Cite this article:
Jaafreh R, Abuhmed T, Kim J-G, et al. Crystal structure guided machine learning for the discovery and design of intrinsically hard materials. Journal of Materiomics, 2022, 8(3): 678-684. https://doi.org/10.1016/j.jmat.2021.11.004

378

Views

4

Crossref

6

Web of Science

7

Scopus

Altmetrics

Received: 21 September 2021
Revised: 25 October 2021
Accepted: 09 November 2021
Published: 17 November 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return