Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
By virtue of the excellent plasticity and tunable transport properties, Ag2S-based materials demonstrate an intriguing prospect for flexible or hetero-shaped thermoelectric applications. Among them, Ag2S1-xTex exhibits rich and interesting variations in crystal structure, mechanical and thermoelectric transport properties. However, Te alloying obviously introduces extremely large order-disorder distributions of cations and anions, leading to quite complicated crystal structures and thermoelectric properties. Detailed composition-structure-performance correlation of Ag2S1-xTex still remains to be established. In this work, we designed and prepared a series of Ag2S1-xTex (x = 0–0.3) materials with low Te content. We discovered that the monoclinic-to-cubic phase transition occurs around x = 0.16 at room temperature. Te alloying plays a similar role as heating in facilitating this monoclinic-to-cubic phase transition, which is analyzed based on the thermodynamic principles. Compared with the monoclinic counterparts, the cubic-structured phases are more ductile and softer in mechanical properties. In addition, the cubic phases show a degenerately semiconducting behavior with higher thermoelectric performance. A maximum zT = 0.8 at 600 K and bending strain larger than 20% at room temperature were obtained in Ag2S0.7Te0.3. This work provides a useful guidance for designing Ag2S-based alloys with enhanced plasticity and high thermoelectric performance.
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Nature 2004;432: 488-92.
Rogers JA, Someya T, Huang Y. Science 2010;327: 1603-7.
Wang Y, Liu G, Sheng M, Yu C, Deng Y. J Mater Chem A 2019;7: 1718-24.
Wang Y, Yang L, Shi XL, Shi X, Chen LD, Dargusch MS, et al. Adv Mater 2019;31: 1807916.
Yang S, Qiu P, Chen L, Shi X. Small Science 2021;1: 2100005.
Ding Y, Qiu Y, Cai K, Yao Q, Chen S, Chen L, et al. Nat Commun 2019;10: 841.
Kim S, We J, Cho B. Energy Environ Sci 2014;7: 1959-65.
Zhang Q, Sun YM, Xu W, Zhu DB. Adv Mater 2014;26: 6829-51.
Pan Y, Aydemir U, Grovogui JA, Witting IT, Hanus R, Xu YB, et al. Adv Mater 2018;30: 1802016.
Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Appl Phys Lett 2009;94: 102111.
Hu L, Zhu T, Liu X, Zhao X. Adv Funct Mater 2014;24: 5211-8.
Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Nature 2011;473: 66-9.
Heremans J, Jovovic V, Toberer E, Saramat A, Kurosaki K, Charoenphakdee A, et al. Science 2008;321: 554-7.
Biswas K, He JQ, Blum ID, Wu CI, Hogan TP, Seidman DN, et al. Nature 2012;489: 414-8.
Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, et al. Nat Mater 2018;17: 421-6.
Li G, An Q, Morozov S, Duan B, Goddard W, Zhang Q, et al. npj Comput Mater 2018;4: 44.
Wei T, Jin M, Wang Y, Chen H, Gao Z, Zhao K, et al. Science 2020;369: 542-5.
Han X. Science 2020;369: 509.
Zhang B, Wu H, Peng K, Shen X, Gong X, Zheng S, et al. Chin Phys B 2021;30: 078101.
Oshima Y, Nakamura A, Matsunaga K. Science 2018;360: 772-4.
Chen H, Wei T, Zhao K, Qiu P, Chen L, He J, et al. Infomat 2021;3: 22-35.
Wang T, Zhao K, Qiu P, Song Q, Chen L, Shi X. ACS Appl Mater Interfaces 2019;11: 12632-8.
Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, et al. Energy Environ Sci 2019;12: 2983-90.
Gao Z, Yang Q, Qiu P, Wei TR, Yang S, Xiao J, et al. Adv Energy Mater 2021;11: 2100883.
Liu J, Xing T, Gao Z, Liang J, Peng L, Xiao J, et al. Appl Phys Lett 2021;119: 121905.
He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, et al. Sci Adv 2020;6: eaaz8423.
Yang S, Gao Z, Qiu P, Liang J, Wei T, Deng T, et al. Adv Mater 2021;33: 2007681.
Liang X, Chen C. Acta Mater 2021;218: 117231.
Blochl PE. Phys Rev B 1994;50: 17953-79.
Kresse G, Hafner J. Phys Rev B 1994;49: 14251-69.
Kresse G, Furthmuller J. Phys Rev B 1996;54: 11169-86.
Kresse G, Furthmuller J. Comput Mater Sci 1996;6: 15-50.
Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett 1996;77: 3865-8.
Tran F, Blaha P. Phys Rev Lett 2009;102: 226401.
Cava R, Reidinger F, Wuensch B. J Solid State Chem 1980;31: 69-80.
Sadanaga R, Sueno S. Mineral Mag 1967;5: 124-43.
Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, et al. Adv Sci 2018;5: 1700727.
Liu W, Yang L, Chen Z, Zou J. Adv Mater 2020;32: 1905703.
Caillat T, Borshchevsky A, Fleurial J. J Appl Phys 1996;80: 4442-9.
Zhou Y, Li X, Xi L, Yang J. J Materiomics 2021;7: 19-24.
Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Angew Chem Int Ed 2016;55: 6826-41.
Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, et al. Nat Mater 2012;11: 422-5.
Tan G, Hao S, Zhao J, Wolverton C, Kanatzidis MG. J Am Chem Soc 2017;139: 6467-73.
Zhao K, Qiu P, Shi X, Chen L. Adv Funct Mater 2019;30: 1903867.
Liu H, Yang J, Shi X, Danilkin SA, Yu D, Wang C, et al. J Materiomics 2016;2: 187-95.
Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Adv Mater 2017;29: 1605884.
Deng T, Wei T, Huang H, Song Q, Zhao K, Qiu P, et al. npj Comput Mater 2020;6: 81.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).