AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Achieving excellent energy storage reliability and endurance via mechanical performance optimization strategy in engineered ceramics with core-shell grain structure

Yu HuanaXiaozhi WangaYingming ZhengaXinjian WangaTao Weia( )Jun Ouyangb( )Xiaohui Wangc
School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
Institute of Advanced Energy Materials and Chemistry, Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Although dielectric ceramic capacitors possess attractive properties for high-power energy storage, their pronounced electrostriction effect and high brittleness are conducive to easy initiation and propagation of cracks that significantly deteriorate electrical reliability and lifetime of capacitors in practical applications. Herein, a new strategy for designing relaxor ferroelectric ceramics with K0.5Na0.5NbO3-core/SiO2-shell structured grains was proposed to simultaneously reduce the electric-field-induced strain and enhance the mechanical strength of the ceramics. The simulation and experiment declared that the bending strength and compression strength of the core-shell structured ceramic were shown to increase by more than 50% over those of the uncoated sample. Meanwhile, the electric-field-induced strain was reduced by almost half after adding the SiO2 coating. The suppressed electrical deformation and enhanced mechanical strength could alleviate the probability of generation of cracks and prevent their propagation, thus remarkably improving breakdown strength and fatigue endurance of the ceramics. As a result, an ultra-high breakdown strength of 425 kV cm−1 and excellent recoverable energy storage density (Wrec ~ 4.64 J cm-3) were achieved in the core-shell structured sample. More importantly, the unique structure could enhance the cycling stability of the ceramic (Wrec variation < ±2% after 105 cycles). Thus, mechanical performance optimization via grain structure engineering offers a new paradigm for improving electrical breakdown strength and fatigue endurance of dielectric ceramic capacitors.

References

[1]

Lu Z, Wang G, Bao W, Li J, Li L, Mostaed A, et al. Energy Environ Sci 2020;13: 2938-48.

[2]

Wang X, Huan Y, Zhao P, Liu X, Wei T, Zhang Q, et al. J. Materiomics 2021;7: 780-9.

[3]

Glaum J, Hoffman M. J Am Ceram Soc 2014;97: 665-80.

[4]

Cheng BL, Reece MJ, Guiu F, Alguero M. Scripta Mater 2000;42: 353-7.

[5]

Zan XQ, Wang DZ, Shi KH, Sun AK, Xu B. Int J Refract Metals Hard Mater 2011;29: 505-8.

[6]

Wang Y, Wang D, Liu H, Zhu W, Zan X. Mater Sci Eng, A 2012;558: 497-501.

[7]

Liu X, Shi J, Zhu F, Du H, Li T, Liu X, et al. J Materiomics 2018;4: 202-7.

[8]

Li F, Jin L, Xu Z, Zhang S. Appl Phys Rev 2014;1: 011103.

[9]

Wu J, Mahajan A, Riekehr L, Zhang H, Yang B, Meng N, et al. Nano Energy 2018;50: 723-32.

[10]

Yuan Q, Li G, Yao F-Z, Cheng S-D, Wang Y, Ma R, et al. Nano Energy 2018;52: 203-10.

[11]

Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, et al. Adv Funct Mater 2019;29: 1903877.

[12]

Wu B, Zhao C, Huang Y, Yin J, Wu W, Wu J. ACS Appl Mater Interfaces 2020;12: 25050-7.

[13]

Webber KG, Voegler M, Khansur NH, Kaeswurm B, Daniels JE, Schader FH. Smart Mater Struct 2017;26.

[14]

Yang Z, Gao F, Du H, Jin L, Yan L, Hu Q, et al. Nano Energy 2019;58: 768-77.

[15]

Han W, Meng X-m, Zhang J-b, Zhao J. J Iron Steel Res Int 2012;19: 73-8.

[16]

Li Y, Liu Y, Öchsner P-E, Isaia D, Zhang Y, Wang K, et al. Acta Mater 2019;174: 369-78.

[17]

Kumar P, Zhu Z, Nai SML, Narayan RL, Ramamurty U. Scripta Mater 2021;202: 114002.

[18]

Furuta A, Uchino K. J Am Ceram Soc 1993;76: 1615-7.

[19]

Vedel D, Grigoriev O, Mazur P, Osipov A, Brodnikovskyi M, Silvestroni L. J Alloys Compd 2021;879: 160398.

[20]

Zhao L, Liu Q, Gao J, Zhang SJ, Li JF. Adv Mater 2017;29: 1701824.

[21]

Cai Z, Wang X, Hong W, Luo B, Zhao Q, Li L. J Am Ceram Soc 2018;101: 5487-96.

[22]

Wang D, Fan Z, Zhou D, Khesro A, Murakami S, Feteira A, et al. J Mater Chem A 2018;6: 4133-44.

[23]

Cai Z, Zhu C, Wang H, Zhao P, Chen L, Li L, et al. J Mater Chem A 2019;7: 14575.

[24]

Gao S, Yao Z, Ning L, Dong G, Fan H, Li Q. Adv Eng Mater 2017;19: 1700125.

[25]

Guo X. Acta Mater 2013;61: 1748-56.

[26]

Huan Y, Wei T, Wang XZ, Liu XM, Zhao PY, Wang XH. Chem Eng J 2021;425: 129506.

[27]

Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, et al. Nano Energy 2018;51: 513-23.

[28]

Liu Z, Zhang Z, Zhang F, Li Y. J Adv Dielect 2013;3: 1350023.

[29]

Wang T, Wei X, Hu Q, Jin L, Xu Z, Feng Y. Mater Sci Eng, B 2013;178: 1081-6.

[30]

Wang G, Li J, Zhang X, Fan Z, Yang F, Feteira A, et al. Energy Environ Sci 2019;12: 582-8.

[31]

Yang H, Qi H, Zuo R. J Eur Ceram Soc 2019;39: 2673-9.

[32]

Qi H, Zuo R. J Mater Chem A 2019;7: 3971.

[33]

Chai Q, Yang D, Zhao X, Chao X, Yang Z. J Am Ceram Soc 2018;101: 2321-9.

[34]

Fan Y, Wang Z, Huan Y, Wei T, Wang X. J Adv Ceram 2020;9: 349-59.

[35]

Liu B, Wang X, Zhao Q, Li L. J Am Ceram Soc 2015;98: 2641-6.

[36]

Zhao Q, Wang X, Gong H, Liu B, Luo B, Li L. J Am Ceram Soc 2018;101: 1245-54.

[37]

Tao H, Wu J. J Mater Sci: Mater Electron 2017;28: 16199-204.

[38]

Shao T, Du H, Ma H, Qu S, Wang J, Wang J, et al. J Mater Chem A 2017;5: 554-63.

[39]

Qu BY, Du HL, Yang ZT, Liu QH. J Am Ceram Soc 2017;100: 1517-26.

[40]

Sun H, Liu J, Wang X, Zhang Q, Hao X, An S. J Mater Chem C 2017;5: 9080-7.

[41]

Xie H, Liu G, Yang L, Pang S, Yuan C, Zhang X, et al. J Mater Sci: Mater Electron 2018;29: 19123-9.

[42]

Qu BY, Du HL, Yang ZT. J Mater Chem C 2016;4: 1795-803.

[43]

Qu BY, Du HL, Yang ZT, Liu QH, Liu TH. RSC Adv 2016;6: 34381-9.

[44]

Yang ZT, Du HL, Qu SB, Hou YD, Ma H, Wang JF, et al. J Mater Chem A 2016;4: 13778-85.

[45]

Wang P-J, Zhou D, Guo H-H, Liu W-F, Su J-Z, Fu M-S, et al. J Mater Chem A 2020;8: 11124-32.

[46]

Randall C, Bhalla A, Shrout T, Cross L. J Mater Res 1990;5: 829-34.

[47]

Li F, Zhang SJ, Damjanovic D, Chen LQ, Shrout TR. Adv Funct Mater 2018;28: 1801504.

[48]

Li F, Zhang S, Yang T, Xu Z, Zhang N, Liu G, et al. Nat Commun 2016;7: 13807.

[49]

Qian H, Yu ZL, Mao MM, Liu YF, Lyu YN. J Eur Ceram Soc 2017;37: 3483-91.

[50]

Shi J, Fan H, Liu X, Bell AJ. J Am Ceram Soc 2014;97: 848-53.

[51]

Gupta SM, Li JF, Viehland D. J Am Ceram Soc 1998;81: 557-64.

[52]

Li M, Pietrowski MJ, De Souza RA, Zhang H, Reaney IM, Cook SN, et al. Nat Mater 2014;13: 31-5.

[53]

Donnelly NJ, Randall CA. Appl Phys Lett 2010;96: 052906.

[54]

Li M, Li L, Zang J, Sinclair DC. Appl Phys Lett 2015;106: 102904.

[55]

Molak A, Ksepko E, Gruszka I, Ratuszna A, Paluch M, Ujma Z. Solid State Ionics 2005;176: 1439-47.

[56]

Zhao PY, Cai ZM, Chen LL, Wu LW, Huan Y, Guo LM, et al. Energy Environ Sci 2021;13: 4882-90.

[57]

Lente MH, Eiras JA. J Phys Condens Matter 2000;12: 5939.

[58]

Ishibashi Y. J Phys Soc Jpn 1990;59: 4148-54.

[59]

Lente MH, Picinin A, Rino JP, Eiras JA. J Appl Phys 2004;95: 2646.

[60]

Li J, Li F, Xu Z, Zhang S. Adv Mater 2018;30: 1802155.

[61]

Wang D, Fotinich Y, Carman GP. J Appl Phys 1998;83: 5342-50.

Journal of Materiomics
Pages 601-610
Cite this article:
Huan Y, Wang X, Zheng Y, et al. Achieving excellent energy storage reliability and endurance via mechanical performance optimization strategy in engineered ceramics with core-shell grain structure. Journal of Materiomics, 2022, 8(3): 601-610. https://doi.org/10.1016/j.jmat.2021.11.014

392

Views

21

Crossref

23

Web of Science

24

Scopus

Altmetrics

Received: 17 October 2021
Revised: 23 November 2021
Accepted: 24 November 2021
Published: 30 November 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return