AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Doping level effects in Gd/Cr co-doped Bi3TiNbO9 Aurivillius-type ceramics with improved electrical properties

Yu Chena,b( )Huajiang ZhouaQingyuan Wanga,cJianguo Zhub( )
School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
Key Laboratory of Deep Earth Science and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

In this work, different amount of Cr2O3 (x = 0–0.3 wt%) as dopant were doped into the Aurivillius-type compound Bi2.8Gd0.2TiNbO9 (BGTN), such a kind of Gd/Cr co-doped Bi3TiNbO9 ceramics with improved electrical properties were synthesized by the convenient solid-state reaction route. The substitution of Cr3+ for Ti4+ at B-site induced the lattice distortion of pseduo-perovskite layer. Fewer Cr2O3 dopant (x < 0.2) resulted in the grain refinement of ceramics. After Cr2O3 was added into BGTN, TC decreased to the vicinity of 908 ℃. Below TC, the relaxed dielectric response resulted from charge carriers hopping induced another board dielectric permittivity peak, whose starting temperature shifts toward lower side gradually with increase of x. The values of Eacon calculated from the Arrhenius relationship between conductivity and temperature indicated the intrinsic conduction at high temperature is dominated by the long-range migration of doubly ionized oxygen vacancies. Moderate Cr2O3 dopant (x = 0.1–0.25) are conducive to the enhancement of piezoelectric property and thermal stability. The sample with x = 0.2 achieved both a high TC~903 ℃ and a high d33~18 pC/N at the same time. Also, its d33 can retain 80% of the initial value after the sample was annealed at 800 ℃ for 4 h.

References

[1]

Wu J, Gao X, Chen J, Wang CM, Zhang S, Dong S. Acta Phys Sin 2018;67:207701.

[2]

Aurivillius B. Ark Kemi 1950;1:499.

[3]

Damjanovic D. Curr Opin SolideState Mater Sci 1998;3:469.

[4]

Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W. Nature 1999;401:682.

[5]

Jiang XP, Fu XL, Chen C, Tu N, Xu MZ, Li XH, Shao H, Chen YJ. J. Adv. Cerm.2015;4:54-60.

[6]

Chen Y, Peng Z, Wang Q, Zhu J. J Alloys Compd 2014;612:120-5.

[7]

Xie X, Zhou Z, Wang T, Liang R, Dong X. J Appl Phys 2018;124:204101.

[8]

Wang L, Gui M, Jin HB, Hu X, Zhao Y, Adnan NM, Li JB. J. Adv. Cerm. 2018;7:256-65.

[9]

Thompson JG, Rae AD, Withers RL. Acta Crystallogr B 1991;47:174-80.

[10]

Wolfe RW, Newnham RE, Smithf DK, Kay MI. Ferroelectrics 1972;3:1-7.

[11]

Yuan J, Nie R, Chen Q. Mater Res Bull 2019;115:70-9.

[12]

Yan H, Zhang H, Zhang Z. J Eur Ceram Soc 2006;26:2785-92.

[13]

Zhou ZY, Dong XL. J Appl Phys 2006;100:044112.

[14]

Zhang Z, Yan H, Xiang P. J Am Ceram Soc 2004;87:602-5.

[15]

Ricote J, Pardo L, Moure A. J Eur Ceram Soc 2001;21:1403-7.

[16]

Zhang Z, Yan HX, Dong XL. J Inorg Mater 2003;18:1377-80.

[17]

Gai ZG, Zhao ML, Su WB. J Electroceram 2013;31:143-7.

[18]

Moure A, Pardo L. J Appl Phys 2005;97:084103.

[19]

Peng Z, Yan D, Chen Q. J Appl Phys 2014;14:1861-6.

[20]

Zhou ZY. J Am Ceram Soc 2010;89:1756-60.

[21]

Zhang Y, Huang P, Zhu L. Int J Appl Ceram Technol 2020;17:2407-15.

[22]

Zhang Z, Yan H, Dong X. Mater Res Bull 2003;38:241-8.

[23]

Zhou Z, Dong X, Huang S. J Am Ceram 2010;89:2939-42.

[24]

Gupta P, Mahapatra PK, Choudhary RNP. Cryst Res Technol 2018;53:1800045.

[25]

Wang Q, Wang CM, Wang JF. Ceram Int 2016;42:6993-7000.

[26]

Zubkov SV. J Advert 2020;10:2060002.

[27]

Jiang L, Ni S, Liu G. Appl Catal B 2017;217:342-52.

[28]

Long C, Fan H, Ren W. J Eur Ceram Soc 2019;39:4103-12.

[29]

Khokhar A, Goyal PK, Thakur OP. Mater Chem Phys 2015;152:13-25.

[30]

Zhou Z, Cheng B, Li Y. Mater Chem Phys 2007;104:225-9.

[31]

Subbarao EC. J Phys Chem Solid 1962;23:665-76.

[32]

Rubio-Marcos F, Banares MA. J Raman Spectrosc 2011;42:639-43.

[33]

Yan H, Li C, Zhou J. Mater Sci Eng B 2002;88:62-7.

[34]
Rossner W. Boston, MA: Springer; 1987. p. 269-76.
[35]
Buchanan RC. Marcel. Dekker. Ltd; 1986.
[36]

Zhang L, Zhao S, Yu H. Jpn J Appl Phys 2004;43:7613.

[37]

Zhang S, Yu F. J Am Ceram 2011;94:3153-70.

[38]

Gupta P, Mahapatra PK, Choudhary R. J Alloys Compd 2021;863:158457.

[39]

Viehland D, Jang SJ, Cross LE, Wuttig M. J Appl Phys 1990;68:2916-21.

[40]

Kim IW, Ahn CW, Kim JS, Bae J-S, Choi BC, Jeong J-H, Lee JS. Appl Phys Lett2002;80:4006.

[41]

Shvartsman VV, Zhai J, Kleemann W. Ferroelectrics 2009;379:77-85.

[42]

Liu L, Huang Y, Su C, Fang L, Wu M, Hu C, Fan H. Appl Phys A 2011;104:1047-51.

[43]

Du H, Ma C, Ma W, Wang H. Process Appl Ceram 2015;12:303-12.

[44]

Zhang HF, Mak CL. J Alloys Compd 2012;513:165-71.

[45]
Moulson AJ, Herbert JM. New York, USA: John Wiley & Sons, Inc.; 1990.
[46]

Guiffard B, Boucher E, Eyraud L, Lebrun L, Guyomar D. J Eur Ceram Soc2005;25:2487-90.

[47]
Herbert JM. London, UK: Gordon and Breach Science Publishers; 1985.
[48]

W Y, Forbess MJ, Seraji S, Limmer SJ, Cao G. J Phys D 2001;90(10): 5296-302.

[49]
Lines ME, Glass AM. Oxford: Oxford Univ. Press; 1977.
[50]

Chen H, Shen B, Xu J, Zhai J. J Alloys Compd 2013;551:92-7.

[51]

Fan Y, Wang Z, Huan Y, Wei T, Wang XJ. Adv. Cerm 2020;9:349-59.

[52]

Huang C, Cai K, Wang Y, Bai Y, Guo D. J Mater Chem C 2018;6:1433-44.

[53]

Xiang P-H, Kinemuchi Y, Watari K, Cao F, Dong X-L. J Am Ceram Soc 2006;89:684-7.

Journal of Materiomics
Pages 906-917
Cite this article:
Chen Y, Zhou H, Wang Q, et al. Doping level effects in Gd/Cr co-doped Bi3TiNbO9 Aurivillius-type ceramics with improved electrical properties. Journal of Materiomics, 2022, 8(4): 906-917. https://doi.org/10.1016/j.jmat.2021.12.008

339

Views

12

Crossref

13

Web of Science

13

Scopus

Altmetrics

Received: 18 October 2021
Revised: 16 December 2021
Accepted: 26 December 2021
Published: 29 December 2021
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return