AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0.875Nb0.1O3

Lukang Wua,1Luomen Tanga,1Yizan ZhaiaYiling ZhangaJianjian SunaDi HuaZhongbin Pana( )Zhen Sub( )Yang ZhangcJinjun Liua( )
School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, Ningbo, 315211, China
China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, Zhejiang, 34001, China
School of Chemical and Materials Engineering, Chaohu University, Hefei, 238000, China

]]>

1 These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Environmentally friendly lead-free ceramics capacitors, with outstanding power density, rapid charging/discharging rate, and superior stability, have been receiving increasing attention of late for their ability to meet the critical requirements of pulsed power devices in low-consumption systems. However, the relatively low energy storage capability must be urgently overcome. Herein, this work reports on lead-free SrTi0.875Nb0.1O3 (STN) replacement of (Bi0.47La0.03Na0.5)0.94Ba0.06TiO3 (BLNBT) ferroelectric ceramics with excellent energy storage performance. Improving relaxor behaviour and breakdown strength (Eb), decreasing grain size, and mitigating large polarization difference are conductive to the enhancement of comprehensive energy storage performances. The phase-field simulation methods are further analysized evolution process of electrical tree in the experimental breakdown. In particular, the 0.70BLNBT-0.30STN ceramic exhibit a large discharged energy density of 4.2 J/cm3 with an efficiency of 89.3% at room temperature under electric field of 380 kV/cm. Additionally, for practical applications, the BLNBT-based ceramics achieve a high power density (~62.3 MW/cm3) and fast discharged time (~148.8 ns) over broad temperature range (20–200 ℃). Therefore, this work can provide a simple and effective guideline paradigm for acquiring high-performance dielectric materials in low-consumption systems operating in a wide range of temperatures and long-term operations.

References

[1]

Zhao P, Fang Z, Zhang X, Chen J, Shen Y, Zhang X, et al. ACS Appl Mater Interfaces 2021;13: 24833-55.

[2]

Li J, Shen Z, Chen X, Yang S, Zhou W, Wang M, et al. Nat Mater 2020;19: 999-1005.

[3]

Guo B, Yan Y, Tang M, Wang Z, Li Y, Zhang L, et al. Chem Eng J 2021;420: 130475.

[4]

Kang R, Wang Z, Liu W, He L, Zhu X, Shi P, et al. ACS Appl Mater Interfaces 2021;13: 25143-52.

[5]

Yang H, Tian J, Lin Y, Ma J. Chem Eng J 2021;418: 129337.

[6]

Hu D, Pan ZB, Wu LK, Yang F, Tang LM, Zhao JH, et al. J Materiomics 2020;7: 869-78.

[7]

Dai ZH, Xie JL, Chen Z, Zhou S, Liu J, Liu W, et al. Chem Eng J 2020;410: 128341.

[8]

Pan H, Zeng Y, Shen Y, Lin Y, Ma J, Li L, et al. J Mater Chem 2017;5: 5920-6.

[9]

Hu T, Ma C, Dai Y, Fan Q, Liu M, Jia C. ACS Appl Mater Interfaces 2020;12: 25930-7.

[10]

Qi H, Xie AW, Tian A, Zuo RZ. Adv Energy Mater 2019;10: 1903338.

[11]
Lin Y, Li D, Zhang M, Zhan S, Y Yang, Yang HB, et al. 2019;11: 36824-36830.
[12]

Li W, Zhou D, Xu R, Pang L, Reaney IM. ACS Appl Energy Mater 2018;1: 5016-23.

[13]

Zhu F, Ward M, Li J, Milne S. Acta Mater 2015;90: 204-12.

[14]

Lu X, Xu J, Yang L, Zhou C, Zhao Y, Yuan C, et al. J Materiomics 2016;2: 87.

[15]

Yin J, Zhang Y, Lv X, Wu J. J Mater Chem 2018;6: 9823-32.

[16]

Kang R, Wang Z, Lou X, Liu W, Shi P, Zhu X, et al. Chem Eng J 2021;410: 128376.

[17]

Hu D, Pan ZB, He ZY, Yang F, Zhang X, Li P, et al. Ceram Int 2020;46: 15364-71.

[18]

Yan B, Fan H, Yadav AK, Wang C, Du Z, Li M, et al. J Mater Sci 2020;55: 14728-39.

[19]

Wang J, Jin Y, Peng F, Yao Y, Li X, Huang Y. J Mater Sci Mater Electron 2021;32: 1842-9.

[20]

Li F, Liu Y, Lyu Y, Qi Y, Yu Z, Lu C. Ceram Int 2017;43: 106-10.

[21]

Wang H, Yuan H, Li X, Zeng F, Wu K, Zheng Q, et al. Chem Eng J 2020;394: 124879.

[22]

Wu K, Wang H, Miao Z, Ding S, Qi Y, Ming Y, et al. Ceram Int 2020;46: 13159-69.

[23]

Yan F, Zhou X, He X, Bai H, Wu S, Shen B, et al. Nano Energy 2020;75: 105012.

[24]

Sun C, Chen X, Shi J, Pang F, Dong X, Chen H, et al. J Eur Ceram Soc 2021;41: 1891-903.

[25]

Cai ZM, Wang XH, Hong W, Luo B, Zhao Q, Li L. J Am Ceram Soc 2018;101: 5487-96.

[26]

Cai ZM, Wang XH, Li L, Hong W. Extreme Mech Lett 2019;28: 87-95.

[27]

Cai ZM, Wang XH, Luo B, Zhao P, Zhu C, Li L. Compos Sci Technol 2019;173: 61-5.

[28]

Cai ZM, Wang XH, Luo B, Hong W, Wu L, Li L. Compos Sci Technol 2017;145: 105-13.

[29]

Cai ZM, Wang XH, Luo B, Hong W, Wu L, Li L. J Am Ceram Soc 2018;101: 1607-15.

[30]

Hu D, Pan ZB, Zhang X, Ye HR, He ZY, Wang MK, et al. J Mater Chem C 2020;8: 591-601.

[31]

Boonlakhorn J, Thongbai P, Putasaeng B, Yamwong T, Maensiri SV. J Alloys Compd 2014;612: 103-9.

[32]

Liu X, Zhao Y, Sun N, Li Y, Hao X. Chem Eng J 2020;417: 128032.

[33]

Zhang F, Qiao X, Shi Q, Chao X, Yang Z, Wu D. J Eur Ceram Soc 2021;41: 368-75.

[34]

Li T, Chen P, Li F, Wang C. Chem Eng J 2021;406: 127151.

[35]

Dong J, Tang M, Li Y, Lv J, Yu K, Liu Y, et al. Ceram Int 2020;46: 28432-42.

[36]

Jiang Z, Yang Z, Yuan Y, Tang B, Zhang S. J Alloys Compd 2021;851: 156821.

[37]

Li D, Lin Y, Yuan Q, Zhang M, Ma L, Yang HB. J Materiomics 2020;6: 743-50.

[38]

Liu G, Hu L, Wang Y, Wang Z, Yu L, Lv J, et al. Ceram Int 2020;46: 19375-84.

[39]

Zhang X, Hu D, Pan ZB, Lv X, He Z, Yang F, et al. Chem Eng J 2021;406: 126818.

[40]

Dong XY, Li X, Chen X, Chen H, Sun C, Shi J, et al. Ceram Int 2021;47: 3079-88.

[41]

Chen H, Chen X, Shi J, Sun C, Dong X, Pang F, et al. Ceram Int 2020;46: 28407-13.

[42]

Shi J, Chen X, Sun C, Pang F, Chen H, Dong X, et al. Ceram Int 2020;46: 25731-7.

[43]

Xie AW, Qi H, Zuo R. ACS Appl Mater Interfaces 2020;12: 19467-75.

[44]

Shi J, Chen X, Li X, Sun J, Sun C, Pan F, et al. J Mater Chem C 2020;8: 3784.

[45]

Liu Z, Tang Z, Hu S, Yao D, Sun F, Chen D, et al. J Mater Chem C 2020;38: 13405-14.

[46]

Yuan Q, Li G, Yao F, Cheng S, Wang Y, Ma R, et al. Nano Energy 2018;52: 203-10.

[47]

Wang Q, Gong P, Wang C. Ceram Int 2020;46: 22452-9.

[48]

Liu G, Li Y, Guo B, Tang M, Li Q, Dong J, et al. Chem Eng J 2020;398: 125625.

[49]

Zhao P, Tang B, Fang Z, Si F, Yang C, Liu G, et al. J Materiomics 2021;7: 195-207.

[50]

Zhao P, Tan B, Fang Z, Si F, Yang C, Zhang S. Chem Eng J 2020;403: 126290.

[51]

Kong X, Yang LT, Cheng Z, Zhang SJ. J Am Ceram Soc 2020;103: 1722-31.

[52]

Chen Z, Bu X, Ruan B, Du J, Zheng P, Li L, et al. J Eur Ceram Soc 2020;400: 5450-7.

[53]

Wang D, Fan Z, Li W, Zhou D, Feteira A, Wang G, et al. ACS Appl Energy Mater 2018;1: 4403-12.

[54]

Chen Z, Bai X, Wang H, Du J, Bai W, Li L, et al. Ceram Int 2020;46: 11549-55.

[55]

Sun H, Wang X, Sun Q, Zhang X, Ma Z, Guo M, et al. J Eur Ceram Soc 2020;40: 2929-35.

[56]

Liu N, Liang R, Zhou Z, Dong X. J Mater Chem C 2018;6: 10211-7.

[57]

Sui J, Fan H, Peng H, Ma J, Yadav AK, Chao W, et al. Ceram Int 2019;45: 20427-34.

[58]

Xie JL, Dai ZH, Ding X, Fan X, Liu W, Zhang L, et al. J Mater Sci 2020;55: 13578-89.

[59]

Dai ZH, Xie JL, Liu W, Wang X, Zhang L, Zhou Z, et al. ACS Appl Mater Interfaces 2020;12: 30289-96.

[60]

Yao K, Zhou C, Wang J, Tan Y, Li Q, Yuan C, et al. Ceram Int 2021;47: 11294-303.

[61]

Hu D, Pan ZB, Tan XY, Yang F, Ding J, Zhang X, et al. Chem Eng J 2021;409: 127375.

[62]

Zhang C, Xiao W, Zeng F, Su D, Du K, Qiu S, et al. J Mater Chem 2021;9: 10088-94.

Journal of Materiomics
Pages 537-544
Cite this article:
Wu L, Tang L, Zhai Y, et al. Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0.875Nb0.1O3. Journal of Materiomics, 2022, 8(3): 537-544. https://doi.org/10.1016/j.jmat.2022.01.003

362

Views

17

Crossref

24

Web of Science

25

Scopus

Altmetrics

Received: 23 November 2021
Revised: 02 January 2022
Accepted: 05 January 2022
Published: 07 January 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return