AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Structural and microstructural description of relaxor-ferroelectric transition in quenched Na1/2Bi1/2TiO3-BaTiO3

Department of Materials- and Geosciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Quenching lead-free Na1/2Bi1/2TiO3-based ceramics from sintering temperature is established to increase the depolarization temperature, Td and the lattice distortion. In situ synchrotron X-ray diffraction measurements were carried out on furnace cooled and quenched Na1/2Bi1/2TiO3 - BaTiO3 (NBT-BT) with 6 and 9 mol. % BT to discern the field-induced ferroelectric order. Phase fractions were determined from full pattern Rietveld refinements and utilized together with the change in unit cell volume to calculate volumetric strain resulting from phase transformations. NBT-6BT demonstrates a cubic symmetry in the furnace cooled state but quenching stabilizes the rhombohedral R3c phase and delays the formation of a field-induced, long range-ordered tetragonal phase, thereby shifting the onset of macroscopic strain to higher fields. A field-induced phase transition from a weakly distorted rhombohedral to tetragonal phase can be observed in furnace cooled NBT-9BT. However, this phase transition cannot be detected in quenched NBT-9BT, since the ferroelectric tetragonal P4mm phase is stabilized in the initial state. In contrast to the furnace cooled materials, both the quenched compositions exhibit overall negligible volumetric strain as a function of electric field. Furthermore, scanning electron micrographs of chemically etched, poled and unpoled samples reveal an increased lamellar domain contrast in the quenched materials. All these findings strengthen the hypothesis of a stabilized ferroelectric order resulting in the absence of a field-induced phase transformation in quenched NBT-BT.

References

[1]

Bell AJ, Deubzer O. MRS Bull 2018;43:581-7. https://doi.org/10.1557/mrs.2018.154.

[2]

Rödel J, Li J-F. MRS Bull 2018;43:576-80. https://doi.org/10.1557/mrs.2018.181.

[3]

Takenaka T, Maruyama K, Sakata K. Jpn J Appl Phys 1991;1(30): 2236-9. https://doi.org/10.1143/Jjap.30.2236.

[4]

Tou T, Hamaguti Y, Maida Y, Yamamori H, Takahashi K, Terashima Y. Jpn J Appl Phys 2009;48:07gm03. https://doi.org/10.1143/Jjap.48.07gm03.

[5]

Shibata K, Wang R, Tou T, Koruza J. MRS Bull 2018;43:612-6. https://doi.org/10.1557/mrs.2018.180.

[6]

Slabki M, Lalitha KV, Rojac T, Rodel J, Koruza J. J Appl Phys 2021;130:014101. https://doi.org/10.1063/5.0052293.

[7]

Polinger V, Bersuker IB. Phys Rev B 2018;98:214102. https://doi.org/10.1103/PhysRevB.98.214102.

[8]

Bokov AA, Ye Z-G. J Adv Dielectr 2012;2:1241010. https://doi.org/10.1142/s2010135x1241010x.

[9]

Ma C, Tan X. J Am Ceram Soc 2011;94:4040-4. https://doi.org/10.1111/j.1551-2916.2011.04670.x.

[10]

Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe HJ, Bell AJ, et al. J Appl Phys 2011;110:074106. https://doi.org/10.1063/1.3645054.

[11]

Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN. 4. Sov Phys-Sol State 1961;2:2651-4.

[12]

Gorfman S, Thomas PA. J Appl Crystallogr 2010;43:1409-14. https://doi.org/10.1107/S002188981003342x.

[13]

Aksel E, Forrester JS, Jones JL, Thomas PA, Page K, Suchomel MR. Appl Phys Lett 2011;98:152901. https://doi.org/10.1063/1.3573826.

[14]

Levin I, Reaney IM. Adv Func Mater 2012;22:3445-52. https://doi.org/10.1002/adfm.201200282.

[15]

Dorcet V, Trolliard G. Acta Mater 2008;56:1753-61. https://doi.org/10.1016/j.actamat.2007.12.027.

[16]

Aksel E, Forrester JS, Nino JC, Page K, Shoemaker DP, Jones JL. Phys Rev B 2013;87:104113. https://doi.org/10.1103/PhysRevB.87.104113.

[17]

Paterson AR, Nagata H, Tan XL, Daniels JE, Hinterstein M, Ranjan R, et al. MRS Bull 2018;43:600-6. https://doi.org/10.1557/mrs.2018.156.

[18]

Yao JJ, Monsegue N, Murayama M, Leng WN, Reynolds WT, Zhang QH, et al. Appl Phys Lett 2012;100:12901. https://doi.org/10.1063/1.3673832.

[19]

Datta K, Neder RB, Richter A, Gobbels M, Neuefeind JC, Mihailova B. Phys Rev B 2018;97:184101. https://doi.org/10.1103/PhysRevB.97.184101.

[20]

Garg R, Rao BN, Senyshyn A, Krishna PSR, Ranjan R. Phys Rev B 2013;88:14103. https://doi.org/10.1103/PhysRevB.88.014103.

[21]

Khansur NH, Hinterstein M, Wang ZY, Groh C, Jo W, Daniels JE. Appl Phys Lett 2015;107:242902. https://doi.org/10.1063/1.4937470.

[22]

Wylie-van Eerd B, Damjanovic D, Klein N, Setter N, Trodahl J. Phys Rev B 2010;82:104112. https://doi.org/10.1103/PhysRevB.82.104112.

[23]

Ma C, Tan X, Dul'kin E, Roth M. J Appl Phys 2010;108:104105. https://doi.org/10.1063/1.3514093.

[24]

Craciun F, Galassi C, Birjega R. J Appl Phys 2012;112:124106. https://doi.org/10.1063/1.4770326.

[25]

Fetzer A-K, Wohninsland A, Hofmann K, Clemens O, Lalitha KV, Kleebe H-J. Open Ceramics 2021;5:100077. https://doi.org/10.1016/j.oceram.2021.100077.

[26]

Daniels JE, Jo W, Rodel J, Rytz D, Donner W. Appl Phys Lett 2011;98:3966-74. https://doi.org/10.1063/1.3602316.

[27]

Pforr F, Meyer KC, Major M, Albe K, Donner W, Stuhr U, et al. Phys Rev B 2017;96:184107. https://doi.org/10.1103/PhysRevB.96.184107.

[28]

Pforr F, Major M, Donner W, Stuhr U, Roessli B. Phys Rev B 2016;94:014105. https://doi.org/10.1103/PhysRevB.94.014105.

[29]

Ranjan R, Dviwedi A. Solid State Commun 2005;135:394-9. https://doi.org/10.1016/j.ssc.2005.03.053.

[30]

Ranjan R. Curr Sci India 2020;118:1507-19. https://doi.org/10.18520/cs/v118/i10/1507-1519.

[31]

Schader FH, Wang ZY, Hinterstein M, Daniels JE, Webber KG. Phys Rev B 2016;93:134111. https://doi.org/10.1103/PhysRevB.93.134111.

[32]

Jo W, Daniels JE, Jones JL, Tan X, Thomas PA, Damjanovic D, et al. J Appl Phys 2011;109:14110. https://doi.org/10.1063/1.3530737.

[33]

Das Adhikary G, Mahale B, Rao BN, Senyshyn A, Ranjan R. Phys Rev B 2021;103:184106. https://doi.org/10.1103/PhysRevB.103.184106.

[34]

Davies M, Aksel E, Jones JL. J Am Ceram Soc 2011;94:1314-6. https://doi.org/10.1111/j.1551-2916.2011.04441.x.

[35]

Li L, Zhu MK, Zhou KL, Wei QM, Zheng MP, Hou YD. J Appl Phys 2017;122:204104. https://doi.org/10.1063/1.5012889.

[36]

Lalitha KV, Zhu T, Salazar MP, Hofmann K, Waidha AI, Jaud JC, et al. J Am Ceram Soc 2020;104:2202-12. https://doi.org/10.1111/jace.17581.

[37]

Riemer LM, Lalitha KV, Jiang XJ, Liu N, Dietz C, Stark RW, et al. Acta Mater 2017;136:271-80. https://doi.org/10.1016/j.actamat.2017.07.008.

[38]

Muramatsu H, Nagata H, Takenaka T. Jpn J Appl Phys 2016;55:10tb07. https://doi.org/10.7567/Jjap.55.10tb07.

[39]

Miura T, Nagata H, Takenaka T. Jpn J Appl Phys 2017;56:10pd05. https://doi.org/10.7567/Jjap.56.10pd05.

[40]

Lalitha KV, Koruza J, Rodel J. Appl Phys Lett 2018;113:252902. https://doi.org/10.1063/1.5053989.

[41]

Wohninsland A, Fetzer A-K, Riaz A., Kleebe H-J, Rödel J, Lalitha KV. Appl Phys Lett 2021;118:72903. https://doi.org/10.1063/5.0039369.

[42]

Nagata H, Takagi Y, Yoneda Y, Takenaka T. APEX 2020;13:61002. https://doi.org/10.35848/1882-0786/ab8c1d.

[43]

Li Z-T, Liu H, Thong H-C, Xu Z, Zhang M-H, Yin J, et al. Adv Electron Mater 2019;5:1800756. https://doi.org/10.1002/aelm.201800756.

[44]

Lalitha KV. Materials 2021;14:2149. https://doi.org/10.3390/ma14092149.

[45]

Jones JL. J Electroceram 2007;19:69-81. https://doi.org/10.1007/s10832-007-9048-z.

[46]

Subbarao EC, Mcquarrie MC, Buessem WR. J Appl Phys 1957;28:1194-200. https://doi.org/10.1063/1.1722606.

[47]

Daniels JE, Jo W, Rodel J, Jones JL. Appl Phys Lett 2009;95:32904. https://doi.org/10.1063/1.3182679.

[48]

Hinterstein M, Schmitt LA, Hoelzel M, Jo W, Rodel J, Kleebe H-J, et al. Appl Phys Lett 2015;106:222904. https://doi.org/10.1063/1.4922145.

[49]

Simons H, Daniels J, Jo W, Dittmer R, Studer A, Avdeev M, et al. Appl Phys Lett 2011;98:82901. https://doi.org/10.1063/1.3557049.

[50]

Groszewicz PB, Breitzke H, Dittmer R, Sapper E, Jo W, Buntkowsky G, et al. Phys Rev B 2014;90:220104. https://doi.org/10.1103/PhysRevB.90.220104.

[51]

Filik J, Ashton AW, Chang PCY, Chater PA, Day SJ, Drakopoulos M, et al. J Appl Crystallogr 2017;50:959-66. https://doi.org/10.1107/S1600576717004708.

[52]

Pramanick A, Damjanovic D, Daniels JE, Nino JC, Jones JL. J Am Ceram Soc 2011;94:293-309. https://doi.org/10.1111/j.1551-2916.2010.04240.x.

[53]

Weyland F, Acosta M, Vogler M, Ehara Y, Rodel J, Novak N. J Mater Sci 2018;53:9393-400. https://doi.org/10.1007/s10853-018-2232-5.

[54]

Lalitha KV, Hinterstein M, Lee KY, Yang TN, Chen LQ, Groszewicz PB, et al. Phys Rev B 2020;101:174108. https://doi.org/10.1103/PhysRevB.101.174108.

[55]

Jones JL, Hoffman M, Bowman KJ. J Appl Phys 2005;98:24115. https://doi.org/10.1063/1.1988978.

[56]

Jones JL, Iverson BJ, Bowman KJ. J Am Ceram Soc 2007;90:2297-314. https://doi.org/10.1111/j.1551-2916.2007.01820.x.

[57]

Jones JL, Slamovich EB, Bowman KJ. J Appl Phys 2005;97:34113. https://doi.org/10.1063/1.1849821.

[58]

Hinterstein M, Lee KY, Esslinger S, Glaum J, Studer AJ, Hoffman M, et al. Phys Rev B 2019;99:174107. https://doi.org/10.1103/PhysRevB.99.174107.

[59]

Oddershede J, Hossain MJ, and Daniels JE. Appl Phys Lett 2016;109:92901. https://doi.org/10.1063/1.4961533.

[60]

Daniels JE, Jo W, Rodel J, Honkimaki V, Jones JL. Acta Mater 2010;58:2103-11. https://doi.org/10.1016/j.actamat.2009.11.052.

[61]

Ma C, Guo HZ, Beckman SP, Tan XL. Phys Rev Lett 2012;109:107602. https://doi.org/10.1103/PhysRevLett.109.107602.

Journal of Materiomics
Pages 823-832
Cite this article:
Wohninsland A, Fetzer A-K, Broughton R, et al. Structural and microstructural description of relaxor-ferroelectric transition in quenched Na1/2Bi1/2TiO3-BaTiO3. Journal of Materiomics, 2022, 8(4): 823-832. https://doi.org/10.1016/j.jmat.2022.01.006

317

Views

4

Crossref

6

Web of Science

6

Scopus

Altmetrics

Received: 20 October 2021
Revised: 05 January 2022
Accepted: 22 January 2022
Published: 27 January 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return