AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering

Leiyang ZhangaRuiyi JingaYunyao HuangaQingyuan HuaD.O. AlikinbV. Ya ShurbJinghui GaocXiaoyong WeiaLing ZhangdGang LiueYan Yane( )Li Jina( )
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Chengdu Hongke Electronic Technology Co., Ltd, Chengdu, 610100, China
School of Materials and Energy, Southwest University, Chongqing, 400715, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Lead-free (Bi0.5Na0.5)TiO3 (BNT)-based relaxor ferroelectric (RFE) ceramics have attracted a lot of attention due to their high power density and rapid charge-discharge capabilities, as well as their potential application in pulse power capacitors. However, because of the desire for smaller electronic devices, their energy storage performance (ESP) should be enhanced even further. We describe a defect engineering strategy for enhancing the antiferroelectric-like RFE feature of BNT-based ceramics by unequal substitution of rare-earth La3+ in this paper. The ESP of La3+-doped samples is raised by 25% with the same synthetic procedure and thickness, due to an increase in the critical electric field (E-field) and saturated E-field during polarization response, which is induced by a modification in the energy barrier between the lattice torsion. More impressively, an ultrahigh recoverable energy storage density Wrec of 8.58 J/cm3 and a high energy storage efficiency η of 94.5% are simultaneously attained in 3 at.% La3+-substituted 0.6(Bi0.5Na0.4K0.1)LaTiO3-0.4[2/3SrTiO3-1/3Bi(Mg2/3Ni1/3)O3] RFE ceramics with good temperature stability (Wrec = 4.6 ± 0.2 J/cm3 and higher η of ≥90% from 30 ℃ to 120 ℃), frequency stability, and fatigue resistance. The significant increase in ESP achieved through defect engineering not only proves the effectiveness of our strategy, but also presents a novel dielectric material with potential applications in pulse power capacitors.

References

[1]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J-F, Zhang S. Prog Mater Sci 2019;102:72-108. https://doi.org/10.1016/j.pmatsci.2018.12.005.

[2]

Yang Z, Du H, Jin L, Poelman D. J Mater Chem A 2021;9:18026-85. https://doi.org/10.1039/D1TA04504K.

[3]

Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, Zhou D, Wang D, Zhang S, Reaney IM. Chem Rev 2021;121:6124-72. https://doi.org/10.1021/acs.chemrev.0c01264.

[4]

Yang Z, Du H, Jin L, Hu Q, Wang H, Li Y, Wang J, Gao F, Qu S. J Mater Chem A 2019;7:27256-66. https://doi.org/10.1039/C9TA11314B.

[5]

Li Y, Liu Y, Tang M, Lv J, Chen F, Li Q, Yan Y, Wu F, Jin L, Liu G. Chem Eng J 2021;419:129673. https://doi.org/10.1016/j.cej.2021.129673.

[6]

Wang W, Zhang L, Jing R, Hu Q, Alikin DO, Shur VYa, Wei X, Liu G, Yan Y, Jin L. Chem Eng J 2022;434:134678. https://doi.org/10.1016/j.cej.2022.134678.

[7]

Hao X. J Adv Dielectr 2013;3:1330001. https://doi.org/10.1142/S2010135X13300016.

[8]

Yang Z, Gao F, Du H, Jin L, Yan L, Hu Q, Yu Y, Qu S, Wei X, Xu Z, Wang Y-J. Nano Energy 2019;58:768-77. https://doi.org/10.1016/j.nanoen.2019.02.003.

[9]

Yan B, Fan H, Yadav AK, Wang C, Zheng X, Wang H, Wang W, Dong W, Wang S. Ceram Int 2020;46:9637-45. https://doi.org/10.1016/j.ceramint.2019.12.230.

[10]

Li Q, Zhang W, Wang C, Ning L, Wang C, Wen Y, Hu B, Fan H. J Alloys Compd 2019;775:116-23. https://doi.org/10.1016/j.jallcom.2018.10.092.

[11]

Wang H, Li Q, Jia Y, Yadav AK, Yan B, Li M, Shen Q, Quan Q, Wang W, Dong G, Fan H. J Alloys Compd 2021;879:160378. https://doi.org/10.1016/j.jallcom.2021.160378.

[12]

Lv J, Li Q, Li Y, Tang M, Jin D, Yan Y, Fan B, Jin L, Liu G. Chem Eng J 2021;420: 129900. https://doi.org/10.1016/j.cej.2021.129900.

[13]

Yan B, Fan H, Yadav AK, Wang C, Du Z, Li M, Wang W, Dong W, Wang S. J Mater Sci 2020;55:14728-39. https://doi.org/10.1007/s10853-020-05070-y.

[14]

Dong G, Fan H, Liu H, Jia Y. Ceram Int 2020;46:23194-9. https://doi.org/10.1016/j.ceramint.2020.06.100.

[15]

Jin L, Li F, Zhang S. J Am Ceram Soc 2014;97:1-27. https://doi.org/10.1111/jace.12773.

[16]

Li J, Li F, Xu Z, Zhang S. Adv Mater 2018;30:1802155. https://doi.org/10.1002/adma.201802155.

[17]

Zhu Q, Zhao K, Xu R, Feng Y, Xu Z, Wei X. J Alloys Compd 2021;877:160108. https://doi.org/10.1016/j.jallcom.2021.160108.

[18]

Hao X, Zhai J, Kong LB, Xu Z. Prog Mater Sci 2014;63:1-57. https://doi.org/10.1016/j.pmatsci.2014.01.002.

[19]

Zhao Y, Gao H, Hao X, Zhang Q. Mater Res Bull 2016;84:177-84. https://doi.org/10.1016/j.materresbull.2016.08.005.

[20]

Liu X, Li Y, Sun N, Hao X. Inorg Chem Front 2020;7:756-64. https://doi.org/10.1039/C9QI01416K.

[21]

Xu R, Xu Z, Feng Y, He H, Tian J, Huang D. J Am Ceram Soc 2016;99:2984-8. https://doi.org/10.1111/jace.14297.

[22]

Xu R, Zhu Q, Tian J, Feng Y, Xu Z. Ceram Int 2017;43:2481-5. https://doi.org/10.1016/j.ceramint.2016.11.043.

[23]

Wang H, Liu Y, Yang T, Zhang S. Adv Funct Mater 2019;29:1807321. https://doi.org/10.1002/adfm.201807321.

[24]

Shrout TR, Zhang SJ. J Electroceram 2007;19:113-26. https://doi.org/10.1007/s10832-007-9047-0.

[25]

Damjanovic D, Klein N, Li J, Porokhonskyy V. Funct Mater Lett 2010;3:5-13. https://doi.org/10.1142/s1793604710000919.

[26]

Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son JS, Ahn CW, Jo W. J Materiomics 2016;2:1-24. https://doi.org/10.1016/j.jmat.2015.12.002.

[27]

Tian Y, Jin L, Zhang H, Xu Z, Wei X, Politova ED, Stefanovich SY, Tarakina NV, Abrahams I, Yan H. J Mater Chem A 2016;4:17279-87. https://doi.org/10.1039/C6TA06353E.

[28]

Tian Y, Jin L, Zhang H, Xu Z, Wei X, Viola G, Abrahams I, Yan H. J Mater Chem A 2017;5:17525-31. https://doi.org/10.1039/C7TA03821F.

[29]

Tian Y, Jin L, Hu Q, Yu K, Zhuang Y, Viola G, Abrahams I, Xu Z, Wei X, Yan H. J Mater Chem A 2019;7:834-42. https://doi.org/10.1039/C8TA10075F.

[30]

Li J, Jin L, Tian Y, Chen C, Lan Y, Hu Q, Li C, Wei X, Yan H. J Materiomics 2021. https://doi.org/10.1016/j.jmat.2021.10.005.

[31]

Zhao L, Liu Q, Gao J, Zhang S, Li J-F. Adv Mater 2017;29:1701824. https://doi.org/10.1002/adma.201701824.

[32]

Zuo R, Fu J, Qi H. Acta Mater 2018;161:352-9. https://doi.org/10.1016/j.actamat.2018.09.056.

[33]

Xie A, Zuo R, Qiao Z, Fu Z, Hu T, Fei L. Adv Energy Mater 2021;11:2101378. https://doi.org/10.1002/aenm.202101378.

[34]

Jiang J, Meng X, Li L, Guo S, Huang M, Zhang J, Wang J, Hao X, Zhu H, Zhang S-T. Energy Storage Mater 2021;43:383-90. https://doi.org/10.1016/j.ensm.2021.09.018.

[35]

Liu G, Dong J, Zhang L, Yan Y, Jing R, Jin L. J Materiomics 2020;6:677-91. https://doi.org/10.1016/j.jmat.2020.05.005.

[36]

Viola G, Tian Y, Yu C, Tan Y, Koval V, Wei X, Choy K-L, Yan H. Prog Mater Sci 2021:100837. https://doi.org/10.1016/j.pmatsci.2021.100837.

[37]

Jing R, Zhang L, Hu Q, Alikin DO, Shur VY, Wei X, Zhang L, Liu G, Zhang H, Jin L. J Materiomics 2022;8:440-51. https://doi.org/10.1016/j.jmat.2021.09.002.

[38]

Zhang L, Cao S, Li Y, Jing R, Hu Q, Tian Y, Gu R, Kang J, Alikin DO, Shur VY, Wei X, Liu G, Gao F, Du H, Yan Y, Jin L. J Alloys Compd 2022;896:163139. https://doi.org/10.1016/j.jallcom.2021.163139.

[39]

Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D. J Appl Phys 2009;105: 094102. https://doi.org/10.1063/1.3121203.

[40]

Zhou X, Xue G, Luo H, Bowen CR, Zhang D. Prog Mater Sci 2021;122:100836. https://doi.org/10.1016/j.pmatsci.2021.100836.

[41]

Fan P, Zhang S-T, Xu J, Zang J, Samart C, Zhang T, Tan H, Salamon D, Zhang H, Liu G. J Mater Chem C 2020;8:5681-91. https://doi.org/10.1039/D0TC00589D.

[42]

Zhang L, Wang Z, Li Y, Chen P, Cai J, Yan Y, Zhou Y, Wang D, Liu G. J Eur Ceram Soc 2019;39:3057-63. https://doi.org/10.1016/j.jeurceramsoc.2019.02.004.

[43]

Kreisel J, Glazer AM, Bouvier P, Lucazeau G. Phys Rev B 2001;63:174106. https://doi.org/10.1103/PhysRevB.63.174106.

[44]

Hong C-H, Guo H, Tan X, Daniels JE, Jo W. J Materiomics 2019;5:634-40. https://doi.org/10.1016/j.jmat.2019.06.004.

[45]

Luo H, Liu H, Deng S, Hu S, Wang L, Gao B, Sun S, Ren Y, Qiao L, Chen J. Acta Mater 2021;208:116711. https://doi.org/10.1016/j.actamat.2021.116711.

[46]

Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, Xu Z, Huang Q, Liao X, Chen L-Q, Shrout TR, Zhang S. Nat Mater 2018;17:349-54. https://doi.org/10.1038/s41563-018-0034-4.

[47]

Li F, Cabral MJ, Xu B, Cheng Z, Dickey EC, LeBeau JM, Wang J, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L-Q, Shrout TR, Zhang S. Science 2019;364:264-8. https://doi.org/10.1126/science.aaw2781.

[48]

Cao S, Zhu J, Chen Q, Liu J, Wu C, Li L, Xu J, Yan H, Gao F. J Materiomics 2021. https://doi.org/10.1016/j.jmat.2021.06.001.

[49]

Ren XB. Nat Mater 2004;3:91-4. https://doi.org/10.1038/nmat1051.

[50]

Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G. ACS Appl Mater Interfaces 2016;8:31109-19. https://doi.org/10.1021/acsami.6b08879.

[51]

Kovalevsky AV, Aguirre MH, Populoh S, Patrício SG, Ferreira NM, Mikhalev SM, Fagg DP, Weidenkaff A, Frade JR. J Mater Chem A 2017;5:3909-22. https://doi.org/10.1039/C6TA09860F.

[52]

Li F, Chen G, Liu X, Zhai J, Shen B, Li S, Li P, Yang K, Zeng H, Yan H. Appl Phys Lett 2017;110:182904. https://doi.org/10.1063/1.4983029.

[53]

Li Z-T, Liu H, Thong H-C, Xu Z, Zhang M-H, Yin J, Li J-F, Wang K, Chen J. Adv Electron Mater 2019;5:1800756. https://doi.org/10.1002/aelm.201800756.

[54]

Yan F, Huang K, Jiang T, Zhou X, Shi Y, Ge G, Shen B, Zhai J. Energy Storage Mater 2020;30:392-400. https://doi.org/10.1016/j.ensm.2020.05.026.

[55]

Rout D, Moon K-S, Kang S-JL, Kim IW. J Appl Phys 2010;108:084102. https://doi.org/10.1063/1.3490781.

[56]

Zhang H, Xu P, Patterson E, Zang J, Jiang S, Rödel J. J Eur Ceram Soc 2015;35: 2501-12. https://doi.org/10.1016/j.jeurceramsoc.2015.03.012.

[57]

Koruza J, Rojas V, Molina-Luna L, Kunz U, Duerrschnabel M, Kleebe H-J, Acosta M. J Eur Ceram Soc 2016;36:1009-16. https://doi.org/10.1016/j.jeurceramsoc.2015.11.046.

[58]

Dorcet V, Trolliard G. Acta Mater 2008;56:1753-61. https://doi.org/10.1016/j.actamat.2007.12.027.

[59]

Levin I, Reaney IM. Adv Funct Mater 2012;22:3445-52. https://doi.org/10.1002/adfm.201200282.

[60]

Rao BN, Datta R, Chandrashekaran SS, Mishra DK, Sathe V, Senyshyn A, Ranjan R. Phys Rev B 2013;88:224103. https://doi.org/10.1103/PhysRevB.88.224103.

[61]

Beanland R, Thomas PA. Phys Rev B 2014;89:174102. https://doi.org/10.1103/PhysRevB.89.174102.

[62]

Paterson AR, Nagata H, Tan X, Daniels JE, Hinterstein M, Ranjan R, Groszewicz PB, Jo W, Jones JL. MRS Bull 2018;43:600-6. https://doi.org/10.1557/mrs.2018.156.

[63]

Li T, Lou X, Ke X, Cheng S, Mi S, Wang X, Shi J, Liu X, Dong G, Fan H, Wang Y, Tan X. Acta Mater 2017;128:337-44. https://doi.org/10.1016/j.actamat.2017.02.037.

[64]

Jin L, Luo W, Wang L, Tian Y, Hu Q, Hou L, Zhang L, Lu X, Du H, Wei X, Liu G, Yan Y. J Eur Ceram Soc 2019;39:277-86. https://doi.org/10.1016/j.jeurceramsoc.2018.09.019.

[65]

Jin L, Pang J, Pu Y, Xu N, Tian Y, Jing R, Du H, Wei X, Xu Z, Guo D, Xu J, Gao F. Ceram Int 2019;45:22854-61. https://doi.org/10.1016/j.ceramint.2019.07.328.

[66]

Merz WJ. Phys Rev 1953;91:513-7. https://doi.org/10.1103/PhysRev.91.513.

[67]

Huband S, Thomas PA. J Appl Phys 2017;121:184105. https://doi.org/10.1063/1.4982660.

[68]

Liu G, Tang M, Hou X, Guo B, Lv J, Dong J, Wang Y, Li Q, Yu K, Yan Y, Jin L. Chem Eng J 2021;412:127555. https://doi.org/10.1016/j.cej.2020.127555.

[69]

Guo B, Yan Y, Tang M, Wang Z, Li Y, Zhang L, Zhang H, Jin L, Liu G. Chem Eng J 2021;420:130475. https://doi.org/10.1016/j.cej.2021.130475.

[70]

Qi H, Zuo R. J Mater Chem A 2019;7:3971-8. https://doi.org/10.1039/C8TA12232F.

[71]

Yan F, Zhou X, He X, Bai H, Wu S, Shen B, Zhai J. Nano Energy 2020;75:105012. https://doi.org/10.1016/j.nanoen.2020.105012.

[72]

Zhang L, Pu Y, Chen M. J Alloys Compd 2019;775:342-7. https://doi.org/10.1016/j.jallcom.2018.10.025.

[73]

Pan Z, Hu D, Zhang Y, Liu J, Shen B, Zhai J. J Mater Chem C 2019;7:4072-8. https://doi.org/10.1039/C9TC00087A.

[74]

Zhou X, Qi H, Yan Z, Xue G, Luo H, Zhang D. ACS Appl Mater Interfaces 2019;11:43107-15. https://doi.org/10.1021/acsami.9b13215.

[75]

Liu G, Li Y, Shi M, Yu L, Chen P, Yu K, Yan Y, Jin L, Wang D, Gao J. Ceram Int 2019;45:19189-96. https://doi.org/10.1016/j.ceramint.2019.06.166.

[76]

Wu Y, Fan Y, Liu N, Peng P, Zhou M, Yan S, Cao F, Dong X, Wang G. J Mater Chem C 2019;7:6222-30. https://doi.org/10.1039/C9TC01239G.

[77]

Liu G, Li Y, Wang Z, Zhang L, Chen P, Wei F, Wang Y, Yu K, Yan Y, Jin L, He Z. Ceram Int 2019;45:15556-65. https://doi.org/10.1016/j.ceramint.2019.05.061.

[78]

Hu D, Pan Z, Zhang X, Ye H, He Z, Wang M, Xing S, Zhai J, Fu Q, Liu J. J Mater Chem C 2020;8:591-601. https://doi.org/10.1039/C9TC05528B.

[79]

Qiao X, Zhang F, Wu D, Chen B, Zhao X, Peng Z, Ren X, Liang P, Chao X, Yang Z. Chem Eng J 2020;388:124158. https://doi.org/10.1016/j.cej.2020.124158.

[80]

Liu G, Li Y, Gao J, Li D, Yu L, Dong J, Zhang Y, Yan Y, Fan B, Liu X, Jin L. J Alloys Compd 2020;826:154160. https://doi.org/10.1016/j.jallcom.2020.154160.

[81]

Li D, Lin Y, Yuan Q, Zhang M, Ma L, Yang H. J Materiomics 2020;6:743-50. https://doi.org/10.1016/j.jmat.2020.06.005.

[82]

Zhao X, Bai W, Ding Y, Wang L, Wu S, Zheng P, Li P, Zhai J. J Eur Ceram Soc 2020;40:4475-86. https://doi.org/10.1016/j.jeurceramsoc.2020.05.078.

[83]

Liu G, Wang Y, Han G, Gao J, Yu L, Tang M, Li Y, Hu J, Jin L, Yan Y. J Alloys Compd 2020;836:154961. https://doi.org/10.1016/j.jallcom.2020.154961.

[84]

Bian S, Yue Z, Shi Y, Zhang J, Feng W. J Am Ceram Soc 2021;104:936-47. https://doi.org/10.1111/jace.17486.

[85]

Zhang X, Hu D, Pan Z, Lv X, He Z, Yang F, Li P, Liu J, Zhai J. Chem Eng J 2021;406:126818. https://doi.org/10.1016/j.cej.2020.126818.

[86]

Huang Y, Zhang L, Jing R, Hu Q, Alikin DO, Shur VY, Islam SS, Du H, Wei X, Feng G, Zhang L, Jin L. Ceram Int 2021;47:6298-309. https://doi.org/10.1016/j.ceramint.2020.10.208.

[87]

Qiao X, Sheng A, Wu D, Zhang F, Chen B, Liang P, Wang J, Chao X, Yang Z. Chem Eng J 2021;408:127368. https://doi.org/10.1016/j.cej.2020.127368.

[88]

Yang H, Tian J, Lin Y, Ma J. Chem Eng J 2021;418:129337. https://doi.org/10.1016/j.cej.2021.129337.

[89]

Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H, Alikin DO, Shur VY, Feng Y, Xu Z, Wei X. Nano Energy 2020;67:104264. https://doi.org/10.1016/j.nanoen.2019.104264.

[90]

Liu G, Li Y, Guo B, Tang M, Li Q, Dong J, Yu L, Yu K, Yan Y, Wang D, Zhang L, Zhang H, He Z, Jin L. Chem Eng J 2020;398:125625. https://doi.org/10.1016/j.cej.2020.125625.

[91]

Dai Z, Xie J, Liu W, Wang X, Zhang L, Zhou Z, Li J, Ren X. ACS Appl Mater Interfaces 2020;12:30289-96. https://doi.org/10.1021/acsami.0c02832.

[92]

Wang G, Li J, Zhang X, Fan Z, Yang F, Feteira A, Zhou D, Sinclair DC, Ma T, Tan X, Wang D, Reaney IM. Energy Environ Sci 2019;12:582-8. https://doi.org/10.1039/C8EE03287D.

[93]

Zhou M, Liang R, Zhou Z, Dong X. J Mater Chem A 2018;6:17896-904. https://doi.org/10.1039/C8TA07303A.

[94]

Liu X, Li Y, Hao X. J Mater Chem A 2019;7:11858-66. https://doi.org/10.1039/C9TA02149C.

Journal of Materiomics
Pages 527-536
Cite this article:
Zhang L, Jing R, Huang Y, et al. Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. Journal of Materiomics, 2022, 8(3): 527-536. https://doi.org/10.1016/j.jmat.2022.01.007

483

Views

68

Crossref

68

Web of Science

68

Scopus

Altmetrics

Received: 28 December 2021
Revised: 25 January 2022
Accepted: 27 January 2022
Published: 01 February 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return