Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Open Access

NaNbO3 modulated phase transition behavior and antiferroelectric stability evolution in 0.88(Bi0.5Na0.5)TiO3-0.12BaTiO3 lead-free ceramics

Yi ZhangaJian FuaAiwen XieaTianyu LibXuewen JiangbRuzhong Zuob()Dou Zhangc()
Institute of Electro Ceramics & Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
Center for Advanced Ceramics, School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu, 241000, China
State Key Laboratory of Power Metallurgy, Central South University, Changsha, Hunan, 410083, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

Giant strains in (Bi0.5Na0.5)TiO3 based ceramics are usually attributed to electric field induced nonpolar to polar phase transition. Whether it is an ergodic relaxor R3c/P4mm ferroelectric (FE) to long-range ordered FE phase transformation or a reversible P4bm antiferroelectric (AFE) to FE phase transition is still unclear. Herein, lead-free (0.88-x)(Bi0.5Na0.5)TiO3-0.12BaTiO3-xNaNbO3 ceramics exhibit a composition-modulated FE tetragonal P4mm to relaxor AFE tetragonal P4bm phase transition, in which double hysteresis loop, sprout-shaped S-E curves, near-zero quasi-static d33 together with a large volume change suggest the AFE characteristics of P4bm phase. An interesting finding is that the reversibility of field-induced AFE P4bm phase to FE P4mm phase transition strongly depends on the NN content, from being completely irreversible at x = 0.01–0.02, to partially reversible at x = 0.03–0.05, and finally to completely reversible at x = 0.06–0.08. It is indicated that the variation of reversibility should be attributed to the change of relative free energy caused by decreasing the FE to AFE phase transition temperature with increasing the NN content.

References

[1]

Jo W, Dittmer R, Acosta M, Zang JD, Groh C, Sapper E, Rödel J. J Electroceram 2012;vol. 29:71-93.

[2]

Reichmann K, Feteira A, Li M. Materials 2015;vol. 8:8467-95.

[3]

Malik RA, Hussain A, Maqbool A, Zaman A, Ahn CW, Rahman JU, Song TK, Kim WJ, Kim MH. J Am Ceram Soc 2015;vol. 98:3842-8.

[4]

Seifert KT, Jo W, Rödel J. J Am Ceram Soc 2010;vol. 93:1392-6.

[5]

Li TY, Lou XJ, Ke XQ, Cheng SD, Mi SB, Wang XJ, Shi J, Liu X, Dong GZ, Fan HQ, Wang YZ, Tan XL. Acta Mater 2017;vol. 128:337-44.

[6]

Zhang ST, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Damjanovic D. Adv Mater 2009;vol. 21:4716-20.

[7]

Guo YP, Gu MY, Luo HS, Liu Y, Withers RL. Phys Rev B 2011;vol. 83:054118.

[8]

Wang FF, Xu M, Tang YX, Wang T, Shi W, Leung CM. J Am Ceram Soc 2012;vol. 95:1955-9.

[9]

Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D. J Appl Phys 2009;vol. 105:094102.

[10]

Hao JG, Shen B, Zhai JW, Chen H. J Appl Phys 2014;vol. 115:034101.

[11]

Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rödel J. Appl Phys Lett 2007;vol. 91:112906.

[12]

Liu LJ, Shi DP, Knapp M, Ehrenberg H, Fang L, Chen J. J Appl Phys 2014;vol. 116:184104.

[13]

Krauss W, Schütz D, Mautner FA, Feteira A, Reichmann K. J Eur Ceram Soc 2010;vol. 30:1827-32.

[14]

Li L, Zhu MK, Wei QM, Zheng MP, Hou YD, Hao JG. J Eur Ceram Soc 2018;vol. 38:1381-8.

[15]

Sawaguchi E, Maniwa H, Hoshino S. Phys Rev 1951;vol. 83:1078.

[16]

Daniels JE, Jo W, Rödel J, Honkimäki V, Jones JL. Acta Mater 2010;vol. 58:2103-11.

[17]

Zuo RZ, Li F, Fu J, Zheng DG, Zhao WL, Qi H. J Eur Ceram Soc 2016;vol. 36:515-25.

[18]

Jones GO, Thomas PA. Acta Cryst B 2000;vol. 56:426-30.

[19]

Ma C, Tan XL, Dul'Kin E, Roth M. J Appl Phys 2010;vol. 108:104105.

[20]

Ma C, Tan XL. J Am Ceram Soc 2011;vol. 94:4040-4.

[21]

Kitanaka Y, Makisumi K, Oshima Y, Noguchi Y, Miyayama M, Torii S, Kamiyama T. Jpn J Appl Phys 2015;vol. 54:10NC05.

[22]

Kitanaka Y, Ogino M, Hirano K, Noguchi Y, Miyayama M, Kagawa Y, Moriyoshi C, Kuroiwa Y, Torii S, Kamiyama T. Jpn J Appl Phys 2013;vol. 52:09KD01.

[23]

Ranjan R, Dviwedi A. Solid state Commun 2005;vol. 135:394-9.

[24]

Glazer AM. Acta Cryst B 1972;vol. 28:3384-92.

[25]

Shannon RD. Acta Cryst A 1976;vol. 32:751-67.

[26]

Schütz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K. Adv Funct Mater 2012;vol. 22:2285-94.

[27]

Wang L, Li Q, Xue L, Liang X. J Mater Sci 2007;vol. 42:7397-401.

[28]

Pokharel BP, Pandey D. J Appl Phys 1999;vol. 86:3327-32.

[29]

Frederick J, Tan XL, Jo W. J Am Ceram Soc 2011;vol. 94:1149-55.

[30]

Pan WY, Dam CQ, Zhang QM, Cross LE. J Appl Phys 1989;vol. 66:6014-23.

[31]

Haun MJ, Harvin TJ, Lanagan MT, Zhuang ZQ, Jang SJ, Cross LE. J Appl Phys 1989;vol. 65:3173-80.

[32]

Park SE, Pan MJ, Markowski K, Yoshikawa S, Cross LE. J Appl Phys 1997;vol. 82:1798-803.

[33]

Tan XL, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W, Rödel J. Phys Rev B 2010;vol. 81:014103.

[34]

Jo W, Rödel J. Appl Phys Lett 2011;vol. 99:042901.

Journal of Materiomics
Pages 1067-1076
Cite this article:
Zhang Y, Fu J, Xie A, et al. NaNbO3 modulated phase transition behavior and antiferroelectric stability evolution in 0.88(Bi0.5Na0.5)TiO3-0.12BaTiO3 lead-free ceramics. Journal of Materiomics, 2022, 8(5): 1067-1076. https://doi.org/10.1016/j.jmat.2022.02.005
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return