AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Screening for new thermoelectric material: A semiconducting TaS3 with nanoporous structure

Yangfan CuiaXiaojun WangaShuai DuanaXin Chena,b( )Xiaobing Liua,b( )
Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
Advanced Research Institute of Multidisciplinary Science, Qufu Normal University, Qufu, Shandong, 273165, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

Transition-metal sulfides, such as 1T- and 2H-TaS2, are attracting considerable interest in modern condensed matter physics for their diverse behaviors of the Mott state, peculiar charge-density-wave phase and superconductivity. The intrinsically low thermal conductivities along the cross-plane direction can advantage the potential high thermoelectric performance; yet, their insignificant power factors severely hampered the practical applications as thermoelectric devices. In this perspective, we herein present a new semiconducting phase in TaS3 with the space group C2/m predicted by the swarm-intelligence structure-searching method. The C2/m-TaS3 phase exhibits anisotropic multivalley band dispersions, which is beneficial for electronic transport. Meanwhile, the unique structure within nanopores leads to strong anharmonic scattering, significantly reducing the lattice thermal conductivity. As a result, the calculated figure of merit ZT can reach up to 1.68 and 1.57 at 800 K for p- and n-type, respectively that is comparable with conventional thermoelectric materials (e.g. PbTe, Bi2Te3). Therefore, our calculation reveals that the C2/m-TaS3 phase can be a potential high-performance candidate as non-toxic and eco-friendly thermoelectrics, and will stimulate further experimental exploration for understanding and tailoring thermoelectric capability in related transition-metal sulfides.

References

[1]

Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG. Adv Mater 2010;22(36):3970-80.

[2]

Zhao LD, He J, Wu CI, Hogan TP, Zhou X, Uher C, et al. J Am Chem Soc 2012;134(18):7902-12.

[3]

Bell LE. Science 2008;321(5895):1457-61.

[4]

Wei TR, Wu CF, Li F, Li JF. J Materiomics 2018;4(4):304-20.

[5]

Wood C. Rep prog phys 1988;51(4):459.

[6]

Snyder GJ, Toberer ES. Nat Mater 2008;7(2):105-14.

[7]

Liu WS, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, et al. Adv Energy Mater 2011:1(4):577-87.

[8]

Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, et al. Science 2008:320(5876):634-8.

[9]

Ahn K, Han MK, He J, Androulakis J, Ballikaya S, Uher C, et al. J Am Chem Soc 2010;132(14):5227-35.

[10]

Lin H, Tan G, Shen JN, Hao S, Wu LM, Calta N, et al. Angew Chem 2016;128(38):11603-8.

[11]

Fu T, Yue X, Wu H, Fu C, Zhu T, Liu X, et al. J Materiomics 2016;2(2):141-9.

[12]

Dong J, Pei J, Hayashi K, Saito W, Li H, Cai B, et al. J Materiomics 2021;7(3):577-84.

[13]

Pathak R, Sarkar D, Biswas K. Angew Chem 2021;60:17686-92.

[14]

Roychowdhury S, Ghosh T, Arora R, Samanta M, Xie L, Singh NK, et al. Science 2021;371(6530):722-7.

[15]

He Y, Day T, Zhang T, Liu H, Shi X, Chen L, et al. Adv Mater 2014;26(23):3974-8.

[16]

Dennler G, Chmielowski R, Jacob S, Capet F, Roussel P, Zastrow S, et al. Adv Energy Mater 2014;4(9):1301581.

[17]

Cui YF, Duan S, Chen X, Liu XB. Vacuum 2019;170:108964.

[18]

Ge ZH, Zhang BP, Chen YX, Yu ZX, Liu Y, Li JF. Chem Commun (J Chem Soc Sect D) 2011;47(47):12697-9.

[19]

Li J, Tan Q, Li JF. J Alloys compd 2013;551:143-9.

[20]

Zhao LD, He J, Hao S, Wu CI, Hogan TP, Wolverton C, et al. J Am Chem Soc 2012;134(39):16327-36.

[21]

Chen XZ, Shen JQ, Xu Y, Zhou J, Xu ZA. Physica B 2004;352(1-4):280-4.

[22]

Rathore E, Juneja R, Culver SP, Minafra N, Singh AK, Zeier WG, et al. Chem Mater 2019;31(6):2106-13.

[23]

Bhui A, Dutta M, Mukherjee M, Rana KS, Singh AK, Soni A, et al. Chem Mater 2021;33(8):2993-3001.

[24]

Samanta M, Ghosh T, Chandra S, Biswas K. J Mater Chem A 2020;8(25):12226-61.

[25]

Chandra S, Dutta P, Biswas K. ACS Appl Energy Mater 2020;3(9):9051-7.

[26]

Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, et al. Nature 2014;508(7496):373-7.

[27]

Cai B, Zhao LD, Li JF. J Materiomics 2020;6(1):77-85.

[28]

He W, Wang D, Dong JF, Qiu Y, Fu L, Feng Y, et al. J Mater Chem A 2018;6(21):10048-56.

[29]

Wang T, Chen HC, Yu F, Zhao XS, Wang HX. Energy Storage Mater 2019;16:545-73.

[30]

Gao YP, Wu X, Huang KJ, Xing LL, Zhang YY, Liu L. CrystEngComm 2017;19(3):404-18.

[31]

Wang J, Yue X, Yang Y, Sirisomboonchai S, Wang P, Ma X, et al. J Alloys Compd 2020;819:153346.

[32]

Lin J, Yan Y, Li C, Si X, Wang H, Qi J, et al. Nano-Micro Lett 2019;11(1):1-11.

[33]

Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. Nat Chem 2013;5(4):263-75.

[34]

Radisavljevic B, Whitwick MB, Kis A. ACS nano 2011;5(12):9934-8.

[35]

Wang Y, Lv J, Zhu L, Ma YM. Phys Rev B 2010;82(9):94116.

[36]

Fei G, Duan S, Zhang MX, Ren ZB, Cui YF, Chen X, et al. Phys Chem Chem Phys 2020;22(34):19172-7.

[37]

Wang XJ, Liu YX, Chen X, Zhang P, Liu XB. Phys Chem Chem Phys 2020;22(16):8827-33.

[38]

Zhou D, Zhou Y, Pu C, Chen X, Lu P, Wang X, et al. NPJ Quant. Mater 2017;2(1):1-7.

[39]

Kohn W, Sham LJ. Phys Rev 1965;140:A1133.

[40]

Hohenberg P, Kohn W. Phys Rev 1964;136:B864.

[41]

Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Rev Mod Phys 1992;64(4):1045.

[42]

Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett 1996;77(18):3865.

[43]

Kresse G, Furthmüller J. Phys Rev B 1996;54(16):11169.

[44]

Heyd J, Scuseria GE, Ernzerhof M. J Chem Phys 2003;118(18):8207-15.

[45]

Heyd J, Scuseria GE, Ernzerhof M. J Chem Phys 2006;118(21):8207.

[46]

Madsen GK, Singh DJ. Comput Phys Commun 2006;175(1):67-71.

[47]

Duan S, Cui YF, Yi WC, Chen X, Yang BC, Liu XB. ACS Appl Mater Inter 2021;13(16):18800–8.

[48]

Bardeen J., Shockley W. Phys Rev 1950;80(1):72.

[49]

Li W, Carrete J, Katcho NA, Mingo N. Comput Phys Commun 2014;185(6):1747-58.

[50]

Togo A, Tanaka I. Scripta Mater 2015;108:1-5.

[51]

Dong Q, Li Q, Li S, Shi X, Niu S, Liu S, Liu R, Liu B, Luo X, Si J. NPJ Quant. Mater 2021;6(1):1-7.

[52]

Mayorga-Martinez CC, Sofer Z, Luxa J, Huber S, Sedmidubsky D, Brázda P, Palatinus Ls, Mikulics M, Lazar P, Medlín R. ACS Nano 2018;12(1):464-73.

[53]

Li WH, Yang L, Wang JQ, Xiang B, Yu Y. ACS Appl Mater Interfaces 2015;7(10):5629-33.

[54]

Zhang L, Zhang CW, Zhang SF, Ji WX, Li P, Wang PJ. Nanoscale 2019;11(12):5666-73.

[55]

Chen D, Zhao L, He J, Liang H, Zhang S, Li C, et al. Phys Rev B 2016;94(17):174411.

[56]

McCormick TM, Kimchi I, Trivedi N. Phys Rev B 2017;95(7):75133.

[57]

Liu X, Chen X, Singh DJ, Stern RA, Wu J, Petitgirard S, Bina CR, Jacobsen SD. Proc Natl Acad Sci USA 2019;116(16):7703-11.

[58]

Nolas GS, Morelli DT, Tritt TM. Annu Rev Mater Sci 1999;29(1):89-116.

[59]

Slack GA, Tsoukala VG. J Appl Phys 1994;76(3):1665-71.

[60]

Tang Y, Chen Sw, Snyder GJ. J Materiomics 2015;1(1):75-84.

[61]

Chen X, Parker D, Singh DJ. Sci Rep 2013;3(1):1-6.

[62]

Wang Y, Chen X, Cui T, Niu Y, Wang Y, Wang M, et al. Phys Rev B 2007;76(15):155127.1-155127.10.

[63]

Maassen J, Lundstrom M. Appl Phys Lett 2013;102(9):093103.

[64]

Xing G, Sun J, Li Y, Fan X, Zheng W, Singh DJ. Phys Rev Mater 2017;1(6):065405.

[65]

Xing G, Sun J, Li Y, Fan X, Zheng W, Singh DJ. Phys Rev Mater 2017;1(7):079901.

Journal of Materiomics
Pages 1031-1037
Cite this article:
Cui Y, Wang X, Duan S, et al. Screening for new thermoelectric material: A semiconducting TaS3 with nanoporous structure. Journal of Materiomics, 2022, 8(5): 1031-1037. https://doi.org/10.1016/j.jmat.2022.02.011

353

Views

1

Crossref

3

Web of Science

3

Scopus

Altmetrics

Received: 08 December 2021
Revised: 25 January 2022
Accepted: 18 February 2022
Published: 25 February 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return