AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Single-phase La0.8Sr0.2Co1-xMnxO3-δ electrocatalyst as a triple H+/O2-/e- conductor enabling high-performance intermediate-temperature water electrolysis

Huangpu Hydrogen Innovation Center / Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

Hydrogen, especially the "green hydrogen" based on water electrolysis, is of great importance to build a sustainable society due to its high-energy-density, zero-carbon-emission features, and wide-range applications. Today's water electrolysis is usually carried out in either low-temperature (< 100 ℃), e.g., alkaline electrolyzer, or high-temperature (> 700 ℃) applications, e.g., solid oxide electrolyzer. However, the low-temperature devices usually suffer from high applied voltages (usually > 1.5 V @0.01 A cm−2) and high cost; meanwhile, the high-temperature ones have an unsatisfied lifetime partially due to the incompatibility among components. Reasonably, an intermediate-temperature device, namely, proton ceramic cell (PCC), has been recently proposed. The widely-used air electrode for PCC is based on double O2-/e- conductor or composited O2-/e-−H+ conductor, limiting the accessible reaction region. Herein, we designed a single-phase La0.8Sr0.2Co1-xMnxO3-δ (LSCM) with triple H+/O2-/e- conductivity as the air electrode for PCCs. Specifically, the La0.8Sr0.2Co0.8Mn0.2O3-δ (LSCM8282) incorporates 5.8% proton carriers in molar fraction at 400 ℃, indicating superior proton conducting ability. Impressively, a high current density of 1580 mA cm−2 for hydrogen production (water electrolysis) is achieved at 1.3 V and 650 ℃, surpassing most low- and high-temperature devices reported so far. Meanwhile, such a PCC can also be operated under a reversible fuel cell mode, with a peak power density of 521 mW cm−2 at 650 ℃. By correlating the electrochemical performances with the hydrated proton concentration of single-phase triple conducting air electrodes in this work and our previous work, a principle for rational design of high-performance PCCs is proposed.

References

[1]

Banham D, Ye S. ACS Energy Lett 2017;2:629-38.

[2]

Wang Y, Ruiz Diaz DF, Chen KS, Wang Z, Adroher XC. Mater Today 2020;32:178-203.

[3]

Chen C, Wang XT, Zhong JH, Liu J, Waterhouse GIN, Liu ZQ. Angew Chem Int Ed 2021;60:22043-50.

[4]

Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J, Zhang J. Chem Soc Rev 2017;46:1427-63.

[5]

Graves C, Ebbesen SD, Jensen SH, Simonsen SB, Mogensen MB. Nat Mater 2015;14:239-44.

[6]

Ouyang T, Wang XT, Mai XQ, Chen AN, Tang ZY, Liu ZQ. Angew Chem Int Ed 2020;59:11948-57.

[7]

Kim J, Jun A, Gwon O, Yoo S, Liu M, Shin J, Lim T-H, Kim G. Nano Energy 2018;44:121-6.

[8]

Zhu M, Shao Q, Qian Y, Huang X. Nano Energy 2019;56:330-7.

[9]

Chen D, Liu T, Wang P, Zhao J, Zhang C, Cheng R, Li W, Ji P, Pu Z, Mu S. ACS Energy Lett 2020;5:2909-15.

[10]

Wang J, Han L, Huang B, Shao Q, Xin HL, Huang X. Nat Commun 2019;10:5692.

[11]

Shan J, Ling T, Davey K, Zheng Y, Qiao SZ. Adv Mater 2019; 31:1900510.

[12]

Lee JG, Park JH, Shul YG. Nat. Commun. 2014;5:4045.

[13]

Pergolesi D, Fabbri E, D'Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Licoccia S, Balestrino G, Traversa E. Nat. Mater. 2010;9:846.

[14]

Duan C, Tong J, Shang M, Nikodemski S, Sanders M, Ricote S, Almansoori A, O'Hayre R. Science 2015;349:1321-6.

[15]

Bi L, Fabbri E, Traversa E. Electrochem Commun 2012;16:37-40.

[16]

Grimaud A, Mauvy F, Bassat J, Fourcade S, Rocheron L, Marrony M, Grenier J. J Electrochem Soc 2012;159:B683-94.

[17]

Tong J, Yang W, Zhu B, Cai R. J Membr Sci 2002;203:175-89.

[18]

Wang W, Li Y, Liu Y, Tian Y, Ma B, Li J, Pu J, Chi B. ACS Sustainable Chem Eng 2021;9:10913-9.

[19]

Lei L, Zhang J, Guan R, Liu J, Chen F, Tao Z. Energy Convers Manag 2020;218:113044.

[20]

Li W, Guan B, Ma L, Hu S, Zhang N, Liu X. J Mater Chem A 2018;6:18057-66.

[21]

Wang N, Hinokuma S, Ina T, Toriumi H, Katayama M, Inada Y, Zhu C, Habazaki H, Aoki Y. Chem Mater 2019;31:8383-93.

[22]

Aoki Y, Tsuji E, Motohashi T, Kowalski D, Habazaki H. J Phys Chem C 2018;122:22301-8.

[23]

Lei L, Tao Z, Wang X, Lemmon JP, Chen F. J Mater Chem A 2017;5:22945-51.

[24]

Huan D, Shi N, Zhang L, Tan W, Xie Y, Wang W, Xia C, Peng R, Lu Y. ACS Appl Mater Interfaces 2018;10:1761-70.

[25]

Huan D, Wang W, Xie Y, Wang W, Xia C, Peng R, Lu Y. J Mater Chem A 2018;6:18508-17.

[26]

Wang N, Toriumi H, Sato Y, Tang C, Nakamura T, Amezawa K, Kitano S, Habazaki H, Aoki Y. ACS Appl Energy Mater. 2020;4:554-63.

[27]

Zhao Z, Cui J, Zou M, Mu S, Huang H, Meng Y, He K, Brinkman KS, Tong J. J Power Sources 2020;450:227609.

[28]

Lee S, Park S, Wee S, Baek HW, Shin D. Solid State Ionics 2018;320:347-52.

[29]

Yang L, Zuo C, Wang S, Cheng Z, Liu M. Adv Mater 2008;20:3280-3.

[30]

Yang L, Liu Z, Wang S, Choi Y, Zuo C, Liu M. J Power Sources 2010;195:471-4.

[31]

Choi J, Kim B, Song SH, Park JS. Int J Hydrogen Energy 2016;41:9619-26.

[32]

Fabbri E, Bi L, Pergolesi D, Traversa E. Energy Environ Sci 2011;4:4984-93.

[33]

Dailly J, Taillades G, Ancelin M, Pers P, Marrony M. J Power Sources 2017;361:221-6.

[34]

Wang N, Hinokuma S, Ina T, Zhu C, Habazaki H, Aoki Y. J Mater Chem A 2020;8:11043-55.

[35]

Ou G, Xu Y, Wen B, Lin R, Ge B Tang, Liang Y, Yang Y, Huang C, Zu K, Yu R D, Chen W, Li J, Wu H, Liu LM, Li Y. Nat Commun 2018;9:1302.

[36]

Zhong H, Alberto Estudillo-Wong, L, Gao Y, Feng Y, Alonso-Vante N. J Energy Chem 2021;59:615-25.

[37]

Sivanantham A, Ganesan P, Shanmugam S. Appl Catal B 2018;237:1148-59.

[38]

Yang BS, Huh MS, Oh S, Lee US, Kim YJ, Oh MS, Jeong JK, Hwang CS, Kim HJ. Appl Phys Lett 2011;98:122110.

[39]

Choi S, Davenport TC, Haile SM. Energy Environ Sci 2019;12:206-15.

[40]

Zhou Y, Liu E, Chen Y, Liu Y, Zhang L, Zhang W, Luo Z, Kane N, Zhao B, Soule L, Niu Y, Ding Y, Ding H, Ding D, Liu M. ACS Energy Lett 2021;6:1511-20.

[41]

Bi L, Shafi SP, Traversa E. J Mater Chem A 2015;3:5815-9.

[42]
He F, Song D, Peng R, Meng G, Yang S. J Power Sources 195 2010;5:3359-64.
[43]

Li W, Guan B, Ma L, Tian H, Liu X. ACS Appl Mater Interfaces 2019;11:18323-30.

[44]

Vollestad E, Strandbakke R, Tarach M, Catalan-Martinez D, Fontaine ML, Beeaff D, Clark DR, Serra JM, Norby T. Nat Mater 2019;18:752-9.

[45]

Feng J, Lv F, Zhang W, Li P, Wang K, Yang C, Wang B, Yang Y, Zhou J, Lin F, Wang GC, Guo S. Adv Mater 2017;29:1703798.

[46]

Hegge F, Lombeck F, Cruz Ortiz E, Bohn L, Von Holst M, Kroschel M, Hubner JM, Vierrath S. ACS Appl Energy Mater 2020;3:8276-84.

[47]

Lin B, Ding H, Dong Y, Wang S, Zhang X, Fang D, Meng G. J Power Sources 2009;186:58-61.

[48]

Liu M, Gao J, Liu X, Meng G. Int J Hydrogen Energy 2011;36:13741-5.

[49]

Chen C, Su H, Lu LN, Hong YS, Chen YZ, Xiao K, Ouyang T, Qin Y, Liu ZQ. Chem Eng J 2021;408:127814.

[50]

Zhao L, He B, Ling Y, Xun Z, Peng R, Meng G, Liu X. Int J Hydrogen Energy 2010;35:3769-74.

[51]

Yang L, Zuo C, Liu M. J Power Sources 2010;195:1845-8.

[52]

Shi H, Ding Z, Ma G. Fuel Cell 2016;16:258-62.

[53]

Mao X, Wang W, Ma G. Ceram Int 2015;41:10276-80.

[54]

Kreuer KD. Proton-conducting oxides. Annu Rev Mater Res 2003;33:333-59.

[55]

Xia Y, Jin Z, Wang H, Gong Z, Lv H, Peng R, Liu W, Bi L. J Mater Chem A 2019;7:16136-48.

[56]

Song Y, Chen Y, Wang W, Zhou C, Zhong Y, Yang G, Zhou W, Liu M, Shao Z. Joule 2019; 3:1-12.

[57]

Choi S, Kucharczyk CJ, Liang Y, Zhang X, Takeuchi I, Ji HI, Haile SM. Nat Energy 2018;3:202-10.

[58]

Zohourian R, Merkle R, Raimondi G. Maier J. Adv Funct Mater 2018;28:1801241.

[59]

Poetzsch D, Merkle R, Maier J. Faraday Discuss 2015;182:129-43.

[60]

Poetzsch D, Merkle R, Maier J. Phys Chem Chem Phys 2014;16:16446-53.

[61]

Han D, Okumura Y, Nose Y, Uda T. Solid State Ionics 2010;186:1601-6.

[62]

Zhou C, Sunarso J, Song Y, Dai J, Zhang J, Gu B, Zhou W, Shao Z. J Mater Chem A 2019;7:13265-74.

[63]

Kim J, Sengodan S, Kwon G, Ding D, Shin J, Liu M, Kim G. ChemSusChem 2014;7:2811-5.

Journal of Materiomics
Pages 1020-1030
Cite this article:
Wang N, Tang C, Du L, et al. Single-phase La0.8Sr0.2Co1-xMnxO3-δ electrocatalyst as a triple H+/O2-/e- conductor enabling high-performance intermediate-temperature water electrolysis. Journal of Materiomics, 2022, 8(5): 1020-1030. https://doi.org/10.1016/j.jmat.2022.02.012

388

Views

8

Crossref

8

Web of Science

9

Scopus

Altmetrics

Received: 12 December 2021
Revised: 10 February 2022
Accepted: 18 February 2022
Published: 28 February 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return