AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Silver particle interlayer with high dislocation density for improving the joining of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte and AISI 441 interconnect

Xiaoyang WangChun LiQihan ZhouMingshen LiMushi ZhengJunlei QiXiaoqing Si( )Jian Cao
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

One of the critical challenges for the protonic ceramic fuel cell stack is sealing electrolytes and interconnects. However, the traditional AgCuO sealant will aggravate the oxidation along the interconnect surface and result in brittle compound layers at the BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) electrolyte interface. The present work demonstrates that a silver particle interlayer with high dislocation density can be adopted to join BZCYYb electrolyte to the interconnect (AISI 441 stainless) in air instead of traditional AgCuO sealant. Elevating temperatures result in a sufficient bonding at the Ag/BZCYYb interface, and a defect-free joint is obtained at 950 ℃. Atomic bonding at Ag/BZCYYb interface is confirmed by TEM. Also, a dense and thin oxide layer (2–3 μm) is formed along the AISI 441 interface. Ag particles in the interlayer provide the main driving force for the sintering joining. The massive dislocations promote the recovery and recrystallization of the Ag interlayer, as well as the interdiffusion of BZCYYb/Ag. After aging in the wet oxidizing atmosphere at 600 ℃ for 300 h, joints remain intact and dense, indicating superior oxidation resistance and aging performance. Besides, the joint shear strength (25.3 MPa) is 59 % higher than that of the joint brazed by traditional AgCuO.

References

[1]

Pergolesi D, Fabbri E, D'Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, et al. Nat. Mater. 2010;9:846-52. https://doi.org/10.1038/nmat2837.

[2]

Tarutin AP, Lyagaeva YG, Vylkov AI, Gorshkov MYu, Vdovin GK, Medvedev DA. J. Mater. Sci. Technol. 2021;93:157-68. https://doi.org/10.1016/j.jmst.2021.03.056.

[3]

Mu S, Huang H, Ishii A, Zhao Z, Zou M, Kuzbary P, et al. J. Power Sources Adv. 2020;4:100017. https://doi.org/10.1016/j.powera.2020.100017.

[4]

Duan C, Hook D, Chen Y, Tong J, O'Hayre R. Energy Environ Sci 2017;10:176-82. https://doi.org/10.1039/C6EE01915C.

[5]

Wang Y, Jia C, Lyu Z, Han M, Wu J, Sun Z, et al. J. Materiomics 2021:S235284782100126X. https://doi.org/10.1016/j.jmat.2021.09.001.

[6]

Choi S, Kucharczyk CJ, Liang Y, Zhang X, Takeuchi I, Ji H-I, et al. Nat Energy 2018;3:202-10. https://doi.org/10.1038/s41560-017-0085-9.

[7]

Choi SM, An H, Yoon KJ, Kim B-K, Lee H-W, Son J-W, et al. Appl. Energy 2019;233-234:29-36. https://doi.org/10.1016/j.apenergy.2018.10.043.

[8]

Zhang L, Yang S, Zhang S. J. Power Sources 2019;440:227125. https://doi.org/10.1016/j.jpowsour.2019.227125.

[9]

Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, et al. Science 2009;326:126-9. https://doi.org/10.1126/science.1174811.

[10]

Duan C, Kee R, Zhu H, Sullivan N, Zhu L, Bian L, et al. Nat Energy 2019;4:230-40. https://doi.org/10.1038/s41560-019-0333-2.

[11]

Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O. J. Alloys Compd. 2019;781:984-1005. https://doi.org/10.1016/j.jallcom.2018.12.015.

[12]

Duan C, Kee RJ, Zhu H, Karakaya C, Chen Y, Ricote S, et al. Nature 2018;557:217-22. https://doi.org/10.1038/s41586-018-0082-6.

[13]

Sabato AG, Zanchi E, Molin S, Cempura G, Javed H, Herbrig K, et al. J. Eur. Ceram. Soc. 2021;41:4496-504. https://doi.org/10.1016/j.jeurceramsoc.2021.03.030.

[14]

Zhu WZ, Deevi SC. Mater. Sci. Eng., A 2003;348:227-43. https://doi.org/10.1016/S0921-5093(02)00736-0.

[15]

Zhou J, Hu X, Li J. J. Alloys Compd. 2021;887:161358. https://doi.org/10.1016/j.jallcom.2021.161358.

[16]

Wu J, Liu X. J Mater Sci Technol 2010:13. https://doi.org/10.1016/S1005-0302(10)60049-7.

[17]

Smeacetto F, Chrysanthou A, Salvo M, Zhang Z, Ferraris M. J. Power Sources 2009;190:402-7. https://doi.org/10.1016/j.jpowsour.2009.01.042.

[18]

Russner N, Dierickx S, Weber A, Reimert R, Ivers-Tiffee E. J. Power Sources 2020;451:227552. https://doi.org/10.1016/j.jpowsour.2019.227552.

[19]

Talic B, Venkatachalam V, Hendriksen PV, Kiebach R. J. Alloys Compd. 2020;821:153229. https://doi.org/10.1016/j.jallcom.2019.153229.

[20]

Wang X, Si X, Li C, Guo X, Cao J. ACS Appl Energy Mater 2021;4:7346-54. https://doi.org/10.1021/acsaem.1c01491.

[21]

Wang Z, Li C, Si X, Wu C, Qi J, Feng J, et al. J. Eur. Ceram. Soc. 2019;39:2617-25. https://doi.org/10.1016/j.jeurceramsoc.2019.03.013.

[22]

Zhang Y, Liu T, Zhang J, Wu C, Lu X, Ding W. J. Membr. Sci. 2017;533:19-27. https://doi.org/10.1016/j.memsci.2017.03.024.

[23]
Weil KS, Hardy JS. In: Proceedings of the 2002 Fossil energy conference. Pittsburgh, PA, USA: National Energy Technology Laboratory; 2002. Baltimore, Maryland.
[24]

A. Kaletsch. J Ceram Sci Tech 2012. https://doi.org/10.4416/JCST2012-00001.

[25]

Kiebach R, Engelbrecht K, Grahl-Madsen L, Sieborg B, Chen M, Hjelm J, et al. J. Power Sources 2016;315:339-50. https://doi.org/10.1016/j.jpowsour.2016.03.030.

[26]

Lin K-L, Singh M, Asthana R. J. Eur. Ceram. Soc. 2015;35:1041-53. https://doi.org/10.1016/j.jeurceramsoc.2014.10.001.

[27]

Raju K, Muksin, Kim S, Song K, Yu JH, Yoon D-H. Mater. Des. 2016;109:233-41. https://doi.org/10.1016/j.matdes.2016.07.068.

[28]

Kaletsch A, Pfaff EM, Broeckmann C. Adv Eng Mater 2014;16:1430-6. https://doi.org/10.1002/adem.201400102.

[29]

Si X, Cao J, Kiebach R, Xu Y, Xu H, Talic B, et al. J. Power Sources 2018;400:296-304. https://doi.org/10.1016/j.jpowsour.2018.08.046.

[30]

Majewski AJ, Dhir A. Mater Renew Sustain Energy 2018;7:16. https://doi.org/10.1007/s40243-018-0123-y.

[31]

Zhou Q, Bieler TR, Nicholas JD. Acta Mater. 2018;148:156-62. https://doi.org/10.1016/j.actamat.2018.01.061.

[32]

Yeom J, Nagao S, Chen C, Sugahara T, Zhang H, Choe C, et al. Appl Phys Lett 2019;114:253103. https://doi.org/10.1063/1.5099140.

[33]

Zhang P, Jiang X, Yuan P, Yan H, Yang D. Int. J. Heat Mass Transfer 2018;127:1048-69. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.083.

[34]

Kim MI, Choi EB, Lee J-H. J. Mater. Res. Technol. 2020;9:16006-17. https://doi.org/10.1016/j.jmrt.2020.11.069.

[35]

Meng XK, Tang SC, Vongehr S. J. Mater. Sci. Technol. 2010;26:487-522. https://doi.org/10.1016/S1005-0302(10)60078-3.

[36]

Li P, Yang YQ, Koval V, Luo X, Chen J, Zhang W, et al. J. Materiomics 2021:S2352847821000897. https://doi.org/10.1016/j.jmat.2021.05.005.

[37]

Bai JG, Yin J, Zhang Z, Lu G-Q, van Wyk JD. IEEE Trans Adv Packag 2007;30:506-10. https://doi.org/10.1109/TADVP.2007.898628.

[38]

Gadaud P, Caccuri V, Bertheau D, Carr J, Milhet X. Mater. Sci. Eng., A 2016;669:379-86. https://doi.org/10.1016/j.msea.2016.05.108.

[39]

Chen C, Suganuma K. Mater. Des. 2019;162:311-21. https://doi.org/10.1016/j.matdes.2018.11.062.

[40]

Suganuma K, Sakamoto S, Kagami N, Wakuda D, Kim K-S, Nogi M. Microelectron. Reliab. 2012;52:375-80. https://doi.org/10.1016/j.microrel.2011.07.088.

[41]

Zhang H, Chen C, Jiu J, Nagao S, Suganuma K. J Mater Sci: Mater Electron 2018;29:8854-62. https://doi.org/10.1007/s10854-018-8903-9.

[42]

Zhang Z, Chen C, Suetake A, Hsieh M-C, Iwaki A, Suganuma K. Scr. Mater. 2021;198:113833. https://doi.org/10.1016/j.scriptamat.2021.113833.

[43]

Asama K, Matsuda T, Ogura T, Sano T, Takahashi M, Hirose A. Mater. Sci. Eng., A 2017;702:398-405. https://doi.org/10.1016/j.msea.2017.07.034.

[44]

Tong J, Clark D, Hoban M, O'Hayre R. Solid State Ionics 2010;181:496-503. https://doi.org/10.1016/j.ssi.2010.02.008.

[45]

Lin C-M, Hsins T-P. Surf. Interfaces 2020;21:100738. https://doi.org/10.1016/j.surfin.2020.100738.

[46]

Cao J, Wang Z, Li C, Si X, Yang B, Guo X, et al. Int. J. Hydrogen Energy 2021;46:8758-66. https://doi.org/10.1016/j.ijhydene.2020.12.059.

[47]

Chen H, Li L, Kemps R, Michielsen B, Jacobs M, Snijkers F, et al. Acta Mater. 2015;88:74-82. https://doi.org/10.1016/j.actamat.2015.01.029.

[48]

Xu Y, Wen Z, Wang S, Wen T. Solid State Ionics 2011;192:561-4. https://doi.org/10.1016/j.ssi.2010.05.052.

[49]

Lee K, Yoon B, Kang J, Lee S, Bae J. Int. J. Hydrogen Energy 2017;42:29511-17. https://doi.org/10.1016/j.ijhydene.2017.10.017.

[50]

Zhou Q, Bieler TR, Nicholas JD. J Electrochem Soc 2019;166:F594-603. https://doi.org/10.1149/2.0911910jes.

[51]

Bobzin K, Ote M, Wiesner S, Kaletsch A, Broeckmann C. Adv Eng Mater 2014;16:1490-7. https://doi.org/10.1002/adem.201400311.

[52]

Wan Y, He B, Wang R, Ling Y, Zhao L. J. Power Sources 2017;347:14-20. https://doi.org/10.1016/j.jpowsour.2017.02.049.

[53]

Liu Y, Yang L, Liu M, Tang Z, Liu M. J. Power Sources 2011;196:9980-4. https://doi.org/10.1016/j.jpowsour.2011.08.047.

[54]

Cao J, Si X, Li W, Song X, Feng J. Int. J. Hydrogen Energy 2017;42:10683-94. https://doi.org/10.1016/j.ijhydene.2017.01.105.

[55]
German RM. Sintering of Advanced Materials, Elsevier; 2010, p. 3-32. https://doi.org/10.1533/9781845699949.1.3.
[56]

Chen TF, Siow KS. J. Alloys Compd. 2021;866:158783. https://doi.org/10.1016/j.jallcom.2021.158783.

[57]

Badrour L, Moya EG, Bernardini J, Moya F. J. Phys. Chem. Solids 1989;50:551-61. https://doi.org/10.1016/0022-3697(89)90447-2.

[58]

Doremus R. J. Appl. Phys. 2006;100:101301-101301. https://doi.org/10.1063/1.2393012.

[59]

Gunduz KO, Chyrkin A, Goebel C, Hansen L, Hjorth O, Svensson J-E, et al. Corros. Sci. 2021;179:109112. https://doi.org/10.1016/j.corsci.2020.109112.

[60]

Alnegren P, Sattari M, Svensson J-E, Froitzheim J. J. Power Sources 2016;301:170-8. https://doi.org/10.1016/j.jpowsour.2015.10.001.

Journal of Materiomics
Pages 1001-1008
Cite this article:
Wang X, Li C, Zhou Q, et al. Silver particle interlayer with high dislocation density for improving the joining of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte and AISI 441 interconnect. Journal of Materiomics, 2022, 8(5): 1001-1008. https://doi.org/10.1016/j.jmat.2022.02.014

318

Views

7

Crossref

8

Web of Science

8

Scopus

Altmetrics

Received: 07 December 2021
Revised: 09 February 2022
Accepted: 25 February 2022
Published: 05 March 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return