AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Excellent energy storage performance of niobate-based glass-ceramics via introduction of nucleating agent

Changshuai LiuShufeng XieHairui BaiFei YanTongtong FuBo Shen( )Jiwei Zhai( )
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

For glass-ceramics, how to realize the collaborative optimization of BDS and permittivity is the key to improve the energy storage density. In this work, ZrO2 is introduced into BPKNAS glass-ceramics as nucleating agent to promote crystal development of glass-ceramics and then achieve high permittivity. When 1.5 mol% ZrO2 is added, the glass-ceramics have the highest permittivity (~128.59) and meanwhile possess high BDS (1948.90 kV/cm) due to the dense microstructure. Therefore, BPKNAS-1.5ZrO2 glass-ceramics has the highest theoretical energy storage density (21.62 J/cm3). Moreover, the permittivity variation of BPKNAS-1.5ZrO2 glass-ceramics is less than 6 % in the wide temperature range from −80 to 300 ℃, showing excellent temperature stability. In addition, BPKNAS-1.5ZrO2 glass-ceramics possesses ultrahigh power density, which reaches up to 382.40 MW/cm3 in overdamped circuit. The above evidence shows that BPKNAS-1.5ZrO2 glass-ceramics with ultrahigh energy storage density and power density is very competitive in the field of energy storage applications.

References

[1]

Liu C, Li F, Ma LP, Cheng HM. Adv Mater 2010;22:E28-62.

[2]

Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, et al. Adv Mater 2017;29.

[3]

Yan F, Shi Y, Zhou X, Zhu K, Shen B, Zhai J. Chem Eng J 2021: 417.

[4]

Ye J, Wang G, Chen X, Dong X. J Materiomics 2021;7:339-46.

[5]
Niu D, Liu J, Liu T. In: Guo H, 2nd International Conference on mechatronics and applied mechanics (ICMAM2012) Hong Kong, PEOPLES R China taipei; 2012. p. 640-4. PEOPLES R China.
[6]

Yan F, Bai H, Shi Y, Ge G, Zhou X, Lin J, et al. Chem Eng J 2021: 425.

[7]

Yan F, Huang K, Jiang T, Zhou X, Shi Y, Ge G, et al. Energy Storage Mater 2020;30:392-400.

[8]

Dong X, Li X, Chen X, Chen H, Sun C, Shi J, et al. J Materiomics 2021;7:629-39.

[9]

Zhou Y, Zhang Q, Luo J, Tang Q, Du J. Scripta Mater 2011;65:296-9.

[10]

Gorzkowski E, Pan M, Bender B, Wu C. J Electroceram 2007;18:269-76.

[11]

Yadav A, Gautam C. J Mater Sci Mater Electron 2014;25:5165-87.

[12]

Cheng C-T, Lanagan M, Lin J-T, Jones B, Pan M-J. J Mater Res 2011;20:438-46.

[13]

Layton M. Herczog A 1967;50:369-75.

[14]

Tian Y, Zhou Y, Du J, Lanagan M. J Am Ceram Soc 2014;97:2353-6.

[15]

Wang H, Liu J, Zhai J, Shen B, Pan Z, Liu J, et al. Ceram Int 2017;43:8898-904.

[16]

Wang S, Tian J, Liu J, Yang K, Shen B, Zhai J. J Mater Chem C 2018;6:12608-14.

[17]

Wang H, Liu J, Zhai J, Shen B, Cain M. J Am Ceram Soc 2016;99:2909-12.

[18]

Yang Y, Song J, Chen G, Yuan C, Li X, Zhou C. J Non-Cryst Solids 2015;410:96-9.

[19]

Liu J, Yang K, Zhai J, Shen B. J Eur Ceram Soc 2018;38:2312-7.

[20]

Reece M, Worrell C, Hill G, Morrell R. J Am Ceram Soc 1996;79:17-26.

[21]

Liu T-y, Chen G-h, Song J, Yuan C-l. Ceram Int 2013;39:5553-9.

[22]

Wang S, Tian J, Yang K, Liu J, Zhai J, Shen B. Ceram Int 2018;44:8528-33.

[23]

Gorzkowski E, Pan M-J, Bender B, Wu C. J Am Ceram Soc 2008;91:1065-9.

[24]

Chakrabarti A, Molla A. J Alloys Compd 2020: 844.

[25]

Yu B, Liang K, Gu S. Ceram Int 2002;28:695-8.

[26]

Deckwerth M, Russel C. Glastech Ber-Glass 1998;71:210-8.

[27]

Chen K, Bai H, Yan F, He X, Liu C, Xie S, et al. ACS Appl Mater Interfaces 2021;13:4236-43.

[28]

Rangarajan B, Jones B, Shrout T, Lanagan M. J Am Ceram Soc 2007;90:784-8.

[29]

Shyu J, Wang J. J Am Ceram Soc 2000;83:3135-40.

[30]

Peng X, Pu Y, Du X, Ji J, Zhou S, Zhang L. J Alloys Compd 2020: 845.

[31]

Xue S, Liu S, Zhang W, Wang J, Tang L, Shen B, et al. J Alloys Compd 2014;617:418-22.

[32]

Xie S, Liu C, Bai H, Chen K, Shen B, Zhai J. J Mater Sci 2021;56:16278-89.

[33]

Bai H, Zhu K, Wang Z, Shen B, Zhai J. Adv Funct Mater 2021: 31.

[34]

Huang K, Ge G, Bai H, Yan F, He X, Shi Y, et al. J Eur Ceram Soc 2021;41:2450-7.

[35]

Xu R, Li B, Tian J, Xu Z, Feng Y, Wei X, et al. Appl Phys Lett 2017;110.

[36]

Jiang T, Chen K, Shen B, Zhai J. Ceram Int 2019;45:19429-34.

[37]

Wang H, Liu J, Zhai J, Shen B, Xiu S, Xiao S, et al. J Alloys Compd 2016;687:280-5.

[38]

Liu C, Xie S, Chen K, Song B, Shen B, Zhai J. Ceram Int 2021;47:31229-37.

[39]

Peng X, Pu Y, Du X, Ji J, Gao P, Zhang L, et al. Chem Eng J 2021: 422.

[40]

Tian J, Wang S, Jiang T, Chen K, Zhai J, Shen B. J Eur Ceram Soc 2019;39:1164-9.

[41]

Wang S, Tian J, Jiang T, Zhai J, Shen B. Ceram Int 2018;44:23109-15.

[42]

Jiang T, Chen K, Shen B, Zhai J. J Mater Sci Mater Electron 2019;30:15277-84.

[43]

Du X, Pu Y, Li X, Peng X, Sun Z, Zhang J, et al. Ceram Int 2021;47:8987-95.

[44]

Jiang D, Shang F, Chen G. Ceram Int 2021;47:27142-50.

Journal of Materiomics
Pages 763-771
Cite this article:
Liu C, Xie S, Bai H, et al. Excellent energy storage performance of niobate-based glass-ceramics via introduction of nucleating agent. Journal of Materiomics, 2022, 8(4): 763-771. https://doi.org/10.1016/j.jmat.2022.03.001

386

Views

19

Crossref

21

Web of Science

24

Scopus

Altmetrics

Received: 17 December 2021
Revised: 24 February 2022
Accepted: 03 March 2022
Published: 11 March 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return