AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

A promising thermoelectrics In4SnSe4 with a wide bandgap and cubic structure composited by layered SnSe and In4Se3

Haonan ShiaChangrong GuoaBingchao QinaGuangtao WangbDongyang Wanga( )Li-Dong Zhaoa( )
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
School of Physics, Henan Normal University, Xinxiang, 453007, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

The wide-bandgap cubic-structure semiconductor In4SnSe4 can be regarded as a product of compositing two typical layered thermoelectric materials SnSe and In4Se3. Remarkably, In4SnSe4 inherited low thermal conductivity from its parent materials. To advance the potential thermoelectric property of In4SnSe4, we systematically investigated its crystal structure and the origin of the intrinsic low thermal conductivity. In4SnSe4 crystallized in a cubic phase (space group pa3), with the lattice parameters of a = b = c = 12.66 Å. The anisotropy of InSe bonds in the lattice determined the complex structure of In4SnSe4 with 72 atoms in the primitive cell. More importantly, sound velocity and elastic properties unclosed the strong anharmonicity in In4SnSe4, which contributed greatly to the low thermal conductivity. With first-principles calculations, it was found that the lone-pair electrons from In+ mainly caused the anharmonicity in the lattice. Additionally, Br was proved to be an effective dopant for In4SnSe4 to improve the electrical transport properties. This work indicated that the complex wide-bandgap semiconductor In4SnSe4 with cubic phase and intrinsic low thermal conductivity was a new promising thermoelectric material with appropriate doping.

References

[1]

Tan G, Zhao L-D, Kanatzidis MG. Chem Rev 2016;116(19): 12123-49.

[2]

Chang C, Chen W, Chen Y, Chen Y, Chen Y, Ding F, Fan C, Fan HJ, Fan Z, Gong C, Gong Y, He Q, Hong X, Hu S, Hu W, Huang W, Huang Y, Ji W, Li D, Li L-J, Li Q, Lin L, Ling C, Liu M, Liu N, Liu Z, Loh KP, Ma J, Miao F, Peng H, Shao M, Song L, Su S, Sun S, Tan C, Tang Z, Wang D, Wang H, Wang J, Wang X, Wang X, Wee ATS, Wei Z, Wu Y, Wu Z-S, Xiong J, Xiong Q, Xu W, Yin P, Zeng H, Zeng Z, Zhai T, Zhang H, Zhang H, Zhang Q, Zhang T, Zhang X, Zhao L-D, Zhao M, Zhao W, Zhao Y, Zhou K-G, Zhou X, Zhou Y, Zhu H, Zhang H, Liu Z. Acta Phys Chim Sin 2021;37(12): 2108017.

[3]

Dragoe N. Mater Lab 2022;1: 220001.

[4]

Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X. Adv Mater 2017;29(14): 1605884.

[5]

Shi X-L, Zou J, Chen Z-G. Chem Rev 2020;120(15): 7399-515.

[6]

He J, Tritt TM. Science 2017;357(6358): eaak9997.

[7]

Hasan MN, Wahid H, Nayan N, Ali MSM. Int J Energy Res 2020;44(8): 6170-222.

[8]

Qin BC, Zhao L-D. Mater Lab 2022;1: 220004.

[9]

Wu D, Pei Y, Wang Z, Wu H, Huang L, Zhao L-D, He J. Adv Funct Mater 2014;24(48): 7763-71.

[10]

Qiu Y, Jin Y, Wang D, Guan M, He W, Peng S, Liu R, Gao X, Zhao L-D. J Mater Chem 2019;7(46): 26393-401.

[11]

Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Science 2008;321(5888): 554-7.

[12]

Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Nature 2011;473(7345): 66-9.

[13]

Xiao Y, Wang D, Qin B, Wang J, Wang G, Zhao L-D. J Am Ceram Soc 2018;140(40): 13097-102.

[14]

Biswas K, He J, Blum ID, Wu C-I, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. Nature 2012;489(7416): 414-8.

[15]

Qian X, Wu H, Wang D, Zhang Y, Wang J, Wang G, Zheng L, Pennycook SJ, Zhao L-D. Energy Environ Sci 2019;12(6): 1969-78.

[16]

Zhao J, Islam SM, Hao S, Tan G, Su X, Chen H, Lin W, Li R, Wolverton C, Kanatzidis MG. Chem Mater 2017;29(19): 8494-503.

[17]

Samanta M, Pal K, Waghmare UV, Biswas K. Angew Chem Int Ed 2020;59(12): 4822-9.

[18]

Zhao J, Islam SM, Tan G, Hao S, Wolverton C, Li RK, Kanatzidis MG. Chem Mater 2017;29(4): 1744-51.

[19]

Pei Y-L, Wu H, Sui J, Li J, Berardan D, Barreteau C, Pan L, Dragoe N, Liu W-S, He J, Zhao L-D. Energy Environ Sci 2013;6(6): 1750-5.

[20]

Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J-F, He J, Zhao L-D. Science 2021;373(6554): 556-61.

[21]

Chang C, Wu M, He D, Pei Y, Wu C-F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J-F, He J, Zhao L-D. Science 2018;360(6390): 778-83.

[22]

Chang C, Wang D, He D, He W, Zhu F, Wang G, et al. Adv Energy Mater 2019;9(28): 1901334.

[23]

He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y-J, Dong J-F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J-M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook SJ, He J, Li J-F, Zhao L-D. Science 2019;365(6460): 1418-24.

[24]

Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H. Adv Funct Mater 2009;19(21): 3476-83.

[25]

Rhyee J-S, Lee KH, Lee SM, Cho E, Kim SI, Lee E, Kwon YS, Shim JH, Kotliar G. Nature 2009;459(7249): 965-8.

[26]

Xiao Y, Zhao L-D. Science 2020;367(6483): 1196-7.

[27]

Qin BC, Xiao Y, Zhou YM, Zhao L-D. Rare Met 2018;37(4): 343-50.

[28]

Wang D, He W, Chang C, Wang G, Wang J, Zhao L-D. J Mater Chem C 2018;6(44): 12016-22.

[29]

Wang H, Hu H, Man N, Xiong C, Xiao Y, Tan X, Liu G, Jiang J. Mater Today Phys 2021;16: 100298.

[30]

Dutta M, Pal K, Etter M, Waghmare UV, Biswas K. J Am Chem Soc 2021;143(40): 16839-48.

[31]

Deiseroth H-J, Pfeifer H. Z für Kristallogr-Cryst Mater 1993;201(1): 151-2.

[32]

Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X, Gong S, He J, Zhang Y, Zeng Z, Zhao L-D. Phys Rev B 2016;94(12): 125203.

[33]

Luu SDN, Supka AR, Nguyen VH, Vo D-VN, Hung NT, Wojciechowski KT, Fornari M, Vaqueiro P. ACS Appl Energy Mater 2020;3(12): 12549-56.

[34]

Kresse G, Furthmüller J. Phys Rev B 1996;54: 111169-86.

[35]

Blochl PE. Phys Rev B 1994;50(24): 17953-79.

[36]

Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett 1996;77: 3865-8.

[37]

Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG. J Chem Phys 2006;124(15): 154709.

[38]

Togo A, Chaput L, Tanaka I, Hug G. Phys Rev B 2010;81(17): 174301.

[39]

Togo A, Chaput L, Tanaka I. Phys Rev B 2015;91(9): 094306.

[40]

Slack GA, Galginatis S. Phys Rev 1964;133(1A): A253-68.

[41]

Morelli DT, Heremans JP, Slack GA. Phys Rev B 2002;66(19): 195304.

[42]

Zhang Y. J Mater 2016;2(3): 237-47.

[43]

Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Nature 2014;508(7496): 373-7.

[44]

Sun D, Xiong Y, Sun Y, Dabo I, Schaak RE. Chem Mater 2017;29(3): 1095-8.

[45]

Meng W, Wang X, Yan Y, Wang J. J Phys Chem C 2018;122(19): 10360-4.

[46]

Ehinon KKD, Naille S, Dedryvere R, Lippens P-E, Jumas J-C, Gonbeau D. Chem Mater 2008;20(16): 5388-98.

[47]

Ohta M, Chung DY, Kunii M, Kanatzidis MG. J Mater Chem 2014;2(47): 20048-58.

[48]

Lin W, He J, Su X, Zhang X, Xia Y, Bailey TP, Stoumpos CC, Tan G, Rettie AJE, Chung DY, Dravid VP, Uher C, Wolverton C, Kanatzidis MG. Adv Mater 2021;33(44): 2104908.

[49]

Liu X, Wang D, Wu H, Wang J, Zhang Y, Wang G, Pennycook SJ, Zhao L-D. Adv Funct Mater 2019;29(3): 1806558.

[50]

Zhang X, Chang C, Zhou Y, Zhao L-D. Materials 2017;10(2): 198.

[51]

Chang C, Zhao L-D. Mater Today Phys 2018;4: 50-7.

[52]

Qu WW, Zhang XX, Yuan BF, Zhao L-D. Rare Met 2018;37(2): 79-94.

[53]

Xiao Y, Wu H, Wang D, Niu C, Pei Y, Zhang Y, Spanopoulos I, Witting IT, Li X, Pennycook SJ, Snyder GJ, Kanatzidis MG, Zhao L-D. Adv Energy Mater 2019;9(17): 1900414.

[54]

Huang Z, Zhang Y, Wu H, Pennycook SJ, Zhao L-D. ACS Appl Energy Mater 2019;2(11): 8236-43.

[55]

Zhao L-D, Lo S-H, He J, Li H, Biswas K, Androulakis J, Wu C-I, Hogan TP, Chung D-Y, Dravid VP, Kanatzidis MG. J Am Chem Soc 2011;133(50): 20476-87.

[56]

Tan G, Shi F, Hao S, Chi H, Bailey TP, Zhao L-D, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. J Am Chem Soc 2015;137(35): 11507-16.

[57]

Kurosaki K, Kosuga A, Muta H, Uno M, Yamanaka S. Appl Phys Lett 2005;87(6): 061919.

[58]

Wan CL, Pan W, Xu Q, Qin YX, Wang JD, Qu ZX, Fang MH. Phys Rev B 2006;74(14): 144109.

[59]

Lin S, Li W, Li S, Zhang X, Chen Z, Xu Y, Chen Y, Pei Y. Joule 2017;1(4): 816-30.

[60]

He W, Wang D, Dong J-F, Qiu Y, Fu L, Feng Y, Hao Y, Wang G, Wang J, Li J-F, He J, Zhao L-D. J Mater Chem 2018;6(21): 10048-56.

[61]

Nielsen MD, Ozolins V, Heremans JP. Energy Environ Sci 2013;6(2): 570-8.

[62]

Jana MK, Pal K, Waghmare UV, Biswas K. Angew Chem Int Ed 2016;55(27): 7792-6.

[63]

Du B, Zhang R, Chen K, Mahajanb A, Reece MJ. J Mater Chem 2017;5(7): 3249-59.

[64]

Freeland BH, Habeeb JJ, Tuck DG. Can J Chem 1977;55(9): 1527-32.

Journal of Materiomics
Pages 982-991
Cite this article:
Shi H, Guo C, Qin B, et al. A promising thermoelectrics In4SnSe4 with a wide bandgap and cubic structure composited by layered SnSe and In4Se3. Journal of Materiomics, 2022, 8(5): 982-991. https://doi.org/10.1016/j.jmat.2022.03.003

370

Views

7

Crossref

7

Web of Science

8

Scopus

Altmetrics

Received: 21 February 2022
Revised: 06 March 2022
Accepted: 14 March 2022
Published: 24 March 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return