AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

A high-performance, single-electrode and stretchable piezo-triboelectric hybrid patch for omnidirectional biomechanical energy harvesting and motion monitoring

Xiaojuan Houa,b,1Jixin Zhonga,b,1Changjun Yanga,bYun Yanga,bJian Hea,b( )Jiliang Mua,bWenping Genga,bXiujian Choua,b
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051, China
Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, China

Peer review under responsibility of The Chinese Ceramic Society.

1 These authors contributed equally to this work.

Show Author Information

Abstract

Triboelectric nanogenerators (TENGs) have recently drawn much attention in the field of biomechanical energy harvesting and motion monitoring. However, the electrode stretchability and contact-separation model induced complicated packed structure remain a problem that heavily affects output performance during various human movements and requires to be urgently addressed. Here, a single-electrode piezo-triboelectric hybrid nanogenerator (SEP-TENG) integrated with stretchable liquid-metal metal electrodes is reported, which simultaneously achieves outstanding energy harvesting performance and skin-comfort human motion monitoring. A polarized piezoelectric BaTiO3/silicon rubber (SR) composites film is served as the effective negative tribomaterial, benefiting from the improved dielectric constant and piezoelectric charge transfer, the optimized SEP-TENG generates a high peak power density of 5.7 W/m2 while contacted with human skin. Besides, owing to the ultralow Young's modulus of the SR encapsulation layer and tribo-piezoelectric hybrid layer, the homogeneous integrated multilayer composite serves no break till a 745% elongation, promoting that the SEP-TENG could effectively harvest biomechanical energy and realize stable power supplying for wearable electronics even under large deformation state. Furthermore, the SEP-TENG could comfortably attach to the finger joints and collect bending energy. This work provides a novel design methodology for a single-electrode TENG to realize omnidirectional biomechanical energy harvesting and motion monitoring.

References

[1]

Yao G, Yin C, Wang Q, Zhang T, Chen S, Lu C, Zhao K, Xu W, Pan T, Gao M, Lin Y. J Materiomics 2020;6(2): 397-413.

[2]

Zhong J, Hou X, He J, Xue F, Yang Y, Chen L, et al. Nano Energy 2022;98: 107289.

[3]

Zhong J, Li Z, Takakuwa M, Inoue D, Hashizume D, Jiang Z, Shi Y, Ou L, Nayeem M-O-G, Umezu S, Fukuda K, Someya T. Adv Mater 2021;34(6): 2107758.

[4]

Liu L, Shi Q, Sun Z, Lee C. Nano Energy 2021;86: 106154.

[5]

Wen F, Zhang Z, He T, Lee C. Nat Commun 2021;12(1): 5378.

[6]

Zhong J, Qian S, Wang X, Yang C, He J, Hou X, Chou X. Mater Lett 2022;306: 130859.

[7]

Zhou Z, Du X, Zhang Z, Luo J, Niu S, Shen D, Wang Y, Yang H, Zhang Q, Dong S. Nano Energy 2021;82: 105709.

[8]

Niu X, Jia W, Qian S, Zhu J, Zhang J, Hou X, Mu J, Geng W, He J, Chou X. ACS Sustain Chem Eng 2019;7(1): 979-85.

[9]

Song E, Xie Z, Bai W, Luan H, Ji B, Ning X, Xia Y, Baek J-M, Lee Y, Avila R, Chen H-Y, Kim J-H, Madhvapathy S, Yao K, Li D, Zhou J, Han M, Won S-M, Zhang X, Myers D-J, Mei Y, Guo X, Xu S, Chang J-K, Yu X, Huang Y, Rogers J-A. Nat Biomed Eng 2021;5(7): 759-71.

[10]

Zhao Y, Gao S, Zhang X, Huo W, Xu H, Chen C, Li J, Xu K, Huang X. Adv Funct Mater 2020;30(25): 2001553.

[11]

Fan F-R, Tian Z-Q, Wang Z-L. Nano Energy 2012;1: 328-34.

[12]

Alam M-M, Lee S, Kim M, Han K-S, Cao V-A, Nah J. Nano Energy 2020;72: 104672.

[13]

Lou M, Abdalla I, Zhu M, Wei X, Yu J, Li Z, Ding B. ACS Appl Mater Interfaces 2020;12(17): 19965-73.

[14]

Yu J, Chen L, Hou X, Mu J, He J, Geng W, Qiao X, Chou X. J Materiomics 2022;8(2): 247-56.

[15]

Hou X, Zhang S, Yu J, Yang C, Zhang N, He J, Chou X. Sci China Technol Sci 2021;64(3): 662-72.

[16]

Tian X, Hua T. ACS Sustainable Chem Eng 2021;9(39): 13356-66.

[17]

He W, Sohn M, Ma R, Kang D-J. Nano Energy 2020;78: 105383.

[18]

Salauddin M, Rana S-M-S, Rahman M-T, Sharifuzzaman M, Maharjan P, Bhatta T, Cho H, Lee S-H, Park C, Shrestha K, Sharma S, Park J-Y. Adv Funct Mater 2021;32(5): 2107143.

[19]

Dong C, Leber A, Das Gupta T, Chandran R, Volpi M, Qu Y, Nguyen-Dang T, Bartolomei N, Yan W, Sorin F. Nat Commun 2020;11(1): 3537.

[20]

Cao W-T, Ouyang H, Xin W, Chao S, Ma C, Li Z, Chen F, Ma M-G. Adv Funct Mater 2020;30(50): 2004181.

[21]

Cao V-A, Kim M, Hu W, Lee S, Youn S, Chang J, Chang H-S, Nah J. ACS Nano 2021;15(6): 10428-36.

[22]

Gu L, Liu J, Cui N, Xu Q, Du T, Zhang L, Wang Z, Long C, Qin Y. Nat Commun 2020;11(1): 1030.

[23]

Mariello M, Qualtieri A, Mele G, De Vittorio M. ACS Appl Mater Interfaces 2021;13(17): 20606-21.

[24]

Mariello M, Fachechi L, Guido F, De Vittorio M. Nano Energy 2021;83: 105811.

[25]

Song Y, Shi Z, Hu G-H, Xiong C, Isogai A, Yang Q. J Mater Chem A 2021;9(4): 1910-37.

[26]

Sun Y, Lu Y, Li X, Yu Z, Zhang S, Sun H, Cheng Z. J Mater Chem A 2020;8(24): 12003-12.

[27]

Xia K, Xu Z. Smart Mater Struct 2020;29(9): 95016.

[28]

Yang C, He J, Guo Y, Zhao D, Hou X, Zhong J, Zhang S, Cui M, Chou X. Mater Des 2021;201: 109508.

[29]

He J, Qian S, Niu X, Zhang N, Qian J, Hou X, Mu J, Geng W, Chou X. Nano Energy 2019;64: 103933.

[30]

Zhu M, Shi Q, He T, Yi Z, Ma Y, Yang B, Chen T, Lee C. ACS Nano 2019;13(2): 1940-52.

[31]

Fang Z, Chan K-H, Lu X, Tan C-F, Ho G-W. J Mater Chem A 2018;6(1): 52-7.

[32]

Park Y, Shin Y-E, Park J, Lee Y, Kim M-P, Kim Y-R, Na S, Ghosh S-K, Ko H. ACS Nano 2020;14(6): 7101-10.

[33]

Park J-E, Kang H, Koo M, Park C. Adv Mater 2020;32(37): 2002178.

[34]

Niu S, Wang S, Lin L, Liu Y, Zhou Y-S, Hu Y, Wang Z-L. Energy Environ Sci 2013;6(12): 3576.

[35]

Wang Z-L. Mater Today 2017;20(2): 74-82.

[36]

Mi H-Y, Jing X, Meador M-A-B, Guo H, Turng L-S, Gong S. ACS Appl Mater Interfaces 2018;10(36): 30596-606.

[37]

Simpkin R. IEEE Trans Microw Theor Tech and Techniques 2010;58(3): 545-50.

[38]

Chen J, Guo H, He X, Liu G, Xi Y, Shi H, Hu C. ACS Appl Mater Interfaces 2016;8(1): 736-44.

[39]

Cassie A B D, Baxter S. Trans Faraday Soc 1944;40: 546-51.

[40]

Bai Z, Xu Y, Zhang Z, Zhu J, Gao C, Zhang Y, Jia H, Guo J. Nano Energy 2020;75: 104884.

[41]

Yang Y, Zhang H, Lin Z-H, Zhou Y-S, Jing Q, Su Y, Yang J, Chen J, Hu C, Wang Z-L. ACS Nano 2013;7(10): 9213-22.

[42]

Wang L, Liu W, Yan Z, Wang F, Wang X. Adv Funct Mater 2020;31(7): 2007221.

[43]

Luo X, Zhu L, Wang Y-C, Li J, Nie J, Wang Z-L. Adv Funct Mater 2021;31(38): 2104928.

[44]

Wu Y, Luo Y, Qu J, Daoud W-A, Qi T. Nano Energy 2020;75: 105027.

[45]

Bai Z, Xu Y, Lee C, Guo J. Adv Funct Mater 2021;31(37): 2104365.

[46]

Wu Y, Qu J, Zhang X, Ao K, Zhou Z, Zheng Z, Mu Y, Wu X, Luo Y, Feng S-P. ACS Nano 2021;15(8): 13427-35.

[47]

Shi K, Huang X, Sun B, Wu Z, He J, Jiang P. Nano Energy 2019;57: 450-58.

[48]

Kwon Y, Shin S-H, Kim Y-H, Jung J-Y, Lee M, Nah J. Nano Energy 2016;25: 225-31.

Journal of Materiomics
Pages 958-966
Cite this article:
Hou X, Zhong J, Yang C, et al. A high-performance, single-electrode and stretchable piezo-triboelectric hybrid patch for omnidirectional biomechanical energy harvesting and motion monitoring. Journal of Materiomics, 2022, 8(5): 958-966. https://doi.org/10.1016/j.jmat.2022.04.003

372

Views

9

Crossref

12

Web of Science

13

Scopus

Altmetrics

Received: 13 February 2022
Revised: 04 April 2022
Accepted: 08 April 2022
Published: 25 April 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return