AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications

Jincymol JosephZhenxiang ChengShujun Zhang( )
Institute of Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW, 2500, Australia

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Among the lead-free compositions identified as potential capacitor materials, BiScO3-BaTiO3 (BS-BT) relaxor dielectrics exhibit good energy storage performance. In this research, 0.4BS-0.6BT is considered as the parent composition, with NaNbO3 (NN) addition intended to substitute the A and B site cations. The NN modified BS-BT ceramics exhibit excellent temperature stability in terms of their dielectric properties, with the room-temperature dielectric constant on the order of 500–1 000 and variation less than 10% up to 400 ℃. In addition, NN has a high band-gap energy leading to increased breakdown strength and energy storage properties in modified compositions. The highest breakdown strength was achieved for 0.4BS-0.55BT-0.05NN, being on the order of 430 kV/cm, and a high energy density of 4.6 J/cm3 with high energy efficiency of 90% was simultaneously achieved. Of particular importance is that the variation of the energy density was below 5% due to the temperature-insensitive dielectric constant, while ~90% energy efficiency was retained over the temperature range of 25–160 ℃. The improved temperature stability with NN addition makes this composition promising for high temperature capacitor and dielectric energy storage applications.

References

[1]

Luo X, Wang J, Dooner M, Clarke. J Appl Energy 2015;137:511-36. https://doi.org/10.1016/j.apenergy.2014.09.081.

[2]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li JF, Zhang S. Prog Mater Sci 2019;102:72-108. https://doi.org/10.1016/j.pmatsci.2018.12.005.

[3]

Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, Zhou D, Wang D, Zhang S, Reaney IM. Chem Rev 2021;121:6124-72. https://doi.org/10.1021/acs.chemrev.0c01264.

[4]

Veerapandiyan V, Benes F, Gindel T, Deluca M. Materials 2020;13(24): 1-47. https://doi.org/10.3390/ma13245742.

[5]

Yang L, Kong X, Cheng Z, Zhang S. J Mater Res 2021;36(5): 1214-22. https://doi.org/10.1557/s43578-020-00085-2.

[6]

Cohen RE. Nature 1992;358:136-8. https://doi.org/10.1038/358136a0.

[7]

Shvartsman Vv, Lupascu DC. J Am Ceram Soc 2012;95(1): 1-26. https://doi.org/10.1111/j.1551-2916.2011.04952.x.

[8]

Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park S-E. Jpn J Appl Phys 2001;40:5999. https://doi.org/10.1143/JJAP.40.5999.

[9]

Woodward DI, Reaney IM, Eitel RE, Randall CA. J Appl Phys 2003;94:5. https://doi.org/10.1063/1.1595726.

[10]

Chen J, Cheng J, Guo J, Cheng Z, Wang J, Liu H, Zhang S. J Am Ceram Soc 2020;103:374-81. https://doi.org/10.1111/jace.16755.

[11]

Zhang S, Xia R, Randall C, Shrout T, Duan R, Speyer RF. J Mater Res 2005;20(8): 2067-71. https://doi.org/10.1557/JMR.2005.0254.

[12]

Zhang S, Randall CA, Shrout TR. J Appl Phys 2004;95(8): 4291-5. https://doi.org/10.1063/1.1682694.

[13]

Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti GA, Rodel J. Appl Phys Rev 2017;4:041305. https://doi.org/10.1063/1.4990046.

[14]

Li WB, Zhou D, Pang LX, Xu R, Guo HH. J Mater Chem 2017;5(37): 19607-12. https://doi.org/10.1039/c7ta05392d.

[15]

Datta K, Thomas PA. J Appl Phys 2010;107(4): 043516. https://doi.org/10.1063/1.3309064.

[16]

Yuan Q, Yao F, Wang Y, Ma R, Wang H. J Mater Chem C 2017;5(37): 9552-8. https://doi.org/10.1039/c7tc02478a.

[17]

Jiang X, Hao H, Zhang S, Lv J, Cao M, Yao Z, Liu H. J Eur Ceram Soc 2019;39(4): 1103-9. https://doi.org/10.1016/j.jeurceramsoc.2018.11.025.

[18]

Xiong B, Hao H, Zhang S, Liu H, Cao M. J Am Ceram Soc 2011;94(10): 3412-7. https://doi.org/10.1111/j.1551-2916.2011.04519.x.

[19]

Tinberg DS, Trolier-Mckinstry S. J Appl Phys 2007;101(2): 024112. https://doi.org/10.1063/1.2430627.

[20]

Guo HY, Lei C, Ye ZG. Appl Phys Lett 2008;92(17): 172901. https://doi.org/10.1063/1.2913208.

[21]

Ogihara H, Randall CA, Trolier-McKinstry S. J Am Ceram Soc 2009;92(1): 110-8. https://doi.org/10.1111/j.1551-2916.2008.02798.x.

[22]

Ogihara H, Randall CA, Trolier-Mckinstry S. J Am Ceram Soc 2009;92(8): 1719-24. https://doi.org/10.1111/j.1551-2916.2009.03104.x.

[23]

Zhou M, Liang R, Zhou Z, Dong X. J Mater Chem 2018;6(37): 17896-904. https://doi.org/10.1039/c8ta07303a.

[24]

Liu G, Li Y, Guo B, Tang M, Li Q, Dong J, Yu L, Yu K, Yan Y, Wang D, Zhang L, Zhang H, He Z, Jin L. Chem Eng J 2020;398:125625. https://doi.org/10.1016/j.cej.2020.125625.

[25]

Lim JB, Zhang S, Shrout TR. Electron Mater Lett 2018;7(1): 71-5. https://doi.org/10.1007/s13391-011-0311-8.

[26]

Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S. J Materiomics 2019;5(3): 385-93. https://doi.org/10.1016/j.jmat.2019.03.006.

[27]

Lu X, Xu J, Yang L, Zhou C, Zhao Y, Yuan C, Li Q, Chen G, Wang H. J Materiomics 2016;2:87-93. https://doi.org/10.1016/j.jmat.2016.02.001.

[28]

Zeb A, Milne SJ. J Am Ceram Soc 2013;96(12): 3701-3. https://doi.org/10.1111/jace.12633.

[29]

Muhammad R, Ali A, Camargo J, Castro MS. ChemistrySelect 2020;5(12): 3730-4. https://doi.org/10.1002/slct.202000243.

[30]

Zeb A, Bai Y, Button T, Milne S. J Am Ceram Soc 2017;97(8): 2479-83. https://doi.org/10.1111/jace.12949.

[31]

Lu X, Hou L, Jin L, Wang L, Tian Y, Yu K, Hu Q, Zhang L, Wei X. Ceram Int 2018;44(5): 5492-9. https://doi.org/10.1016/j.ceramint.2017.12.188.

[32]

Xu Q, Li T, Hao H, Zhang S, Wang Z, Cao M, Yao Z, Liu H. J Eur Ceram Soc 2015;35(2): 545-53. https://doi.org/10.1016/j.jeurceramsoc.2014.09.003.

[33]

Li F, Zhai J, Shen B, Liu X, Yang K, Zhang Y, Li P, Liu B, Zeng H. J Appl Phys 2017;121(5): 054103. https://doi.org/10.1063/1.4975409.

[34]

Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, Zhang S. Adv Funct Mater 2019;29(35): 1903877. https://doi.org/10.1002/adfm.201903877.

[35]

Ahn CW, Hong CH, Choi BY, Kim HP, Han HS, Hwang Y, Jo W, Wang K, Li JF, Lee JS, Kim IW. J Kor Phys Soc 2016;68(12): 1481-94. https://doi.org/10.3938/jkps.68.1481.

[36]

Liu X, Hou Y, Xu Y, Zheng M, Zhu M. J Alloys Compd 2020;844:156163. https://doi.org/10.1016/j.jallcom.2020.156163.

[37]

Zhao P, Tang B, Fang Z, Si F, Yang C, Liu G, Zhang S. J Materiomics 2021;7(1): 195-207. https://doi.org/10.1016/j.jmat.2020.07.009.

[38]

Qi H, Xie A, Tian A, Zuo R. Adv Energy Mater 2020;10(6): 1903338. https://doi.org/10.1002/aenm.201903338.

[39]

Qi H, Zuo R. J Mater Chem 2019;7:3971-8. https://doi.org/10.1039/C8TA12232F.

[40]

Li L, Roncal-Herrero T, Harrington J, Milne SJ, Brown AP, Dean JS, Sinclair DC. Acta Mater 2021;216:117136. https://doi.org/10.1016/j.actamat.2021.117136.

[41]

Xu Q, Song Z, Tang W, Hao H, Zhang L, Appiah M, Cao M, Yao Z, He Z, Liu H. J Am Ceram Soc 2015;98(10): 3119-26. https://doi.org/10.1111/jace.13693.

[42]

Kong X, Yang L, Cheng Z, Zhang S. J Am Ceram Soc 2020;103(3): 1722-31. https://doi.org/10.1111/jace.16844.

[43]

Zhou M, Liang R, Zhou Z, Dong X. J Mater Chem C 2018;6:8528-37. https://doi.org/10.1039/C8TC03003K.

[44]

Yang L, Kong X, Cheng Z, Zhang S. J Mater Chem A 2019;7:8573-80. https://doi.org/10.1039/C9TA01165J.

[45]

Lin Y, Li D, Zhang M, Zhan S, Yang Y, Yang H, Yuan Q. ACS Appl Mater Interfaces 2019;11:36824-30. https://doi.org/10.1021/acsami.9b10819.

[46]

Zhang M, Yang H, Yu Y, Lin Y. Chem Eng J 2021;425:131465. https://doi.org/10.1016/j.cej.2021.131465.

[47]

Zhang M, Yang H, Lin Y, Yuan Q, Du H. Energy Storage Mater 2021;45:861-8. https://doi.org/10.1016/j.ensm.2021.12.037.

Journal of Materiomics
Pages 731-738
Cite this article:
Joseph J, Cheng Z, Zhang S. NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications. Journal of Materiomics, 2022, 8(4): 731-738. https://doi.org/10.1016/j.jmat.2022.04.005

296

Views

13

Crossref

14

Web of Science

14

Scopus

Altmetrics

Received: 08 February 2022
Revised: 10 April 2022
Accepted: 18 April 2022
Published: 21 April 2022
© 2022 The Chinese Ceramic Society.

All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return