AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Achieving high thermoelectric performance through carrier concentration optimization and energy filtering in Cu3SbSe4-based materials

Sitong WeiaBoyi Wangb,cZipei ZhangaWenhao LiaLu YuaShikai WeiaZhen JiaWeiyu SongdShuqi Zhenga( )
College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
College of Science, China University of Petroleum, Beijing, 102249, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

The previous works commonly adjust the carrier concentration through acceptor doping, but at the same time, the decrease of the Seebeck coefficient limits the further improvement of electrical properties in Cu3SbSe4-based materials. In this work, a microwave-assisted hydrothermal synthesis method was used to synthesize Cu3SbSe4/TiO2 hollow microspheres. Part of TiO2 participates in the reaction, replaces the Sb site of Cu3SbSe4 to form holes, and the rest is dispersed in the matrix in the form of the second phase. The first-principles calculations reveal that the doping of Ti significantly changes the band structure and phonon spectrum, thereby regulating carrier concentration while increasing phonon scattering. In addition, experimental results show that the energy filtering effect generated by the extra-mixed TiO2 nano particles, which suppresses the decrease of Seebeck coefficient by acceptor doping. Consequently, the highest average power factor 897.5 μW m−1 K−2 and the zT peak value of 0.70 can be obtained in Cu3SbSe4/6%TiO2 sample at 298–623 K. This work provides a new sight to improve the thermoelectric properties in Cu3SbSe4 through carrier concentration regulation and nano-phase composition.

References

[1]

Muhammad Sajid, Ibrahim, et al. Renew Sustain Energy Rev 2017;78: 15-22. https://doi.org/10.1016/j.rser.2017.04.098.

[2]

Cramer CL, Hsin W, Kaka M. J Electron Mater 2018;47: 5122-32. https://doi.org/10.1007/s11664-018-6402-7.

[3]

Shi XL, Chen WY, Zhang T, et al. Energy Environ Sci 2021;14(2): 729-64. https://doi.org/10.1039/d0ee03520c.

[4]

Dong J, Pei J, Hayashi K, et al. J. Materiom. 2021;7(3): 577-84. https://doi.org/10.1016/j.jmat.2020.11.007.

[5]

Witting IT, Grovogui JA, Dravid VP, et al. J. Materiom. 2020;6(3): 532-44. https://doi.org/10.1016/j.jmat.2020.04.001.

[6]

Hong M, Lyu W, Wang Y, et al. J Am Chem Soc 2020;142(5): 2672-81. https://doi.org/10.1021/jacs.9b13272.

[7]

Zhang Q, Feng C, Liu W, et al. J Am Chem Soc 2012;134(24): 10031. https://doi.org/10.1021/ja301245b.

[8]

Shi X, Wu A, Feng T, et al. Adv Energy Mater 2019;9(11): 1803242.1-1803242.15. https://doi.org/10.1002/aenm.201803242.

[9]

Xiao Y, Wang D, Zhang Y, et al. J Am Chem Soc 2020;142(8): 4051-60. https://doi.org/10.1021/jacs.0c00306.

[10]

Pei Y, Shi X, Lalonde A, et al. Nature 2011;473(7345): 66-9. https://doi.org/10.1038/nature09996.

[11]

Dong X, Cui W, Liu WD, et al. J Mater Sci Technol 2021;86: 204-9. https://doi.org/10.1016/j.jmst.2021.01.040.

[12]

Chen ZZ, Xinyue, Pei Yanzhong. Adv Mater 2018;30(17): e1705617. https://doi.org/10.1002/adma.201705617.n/a.

[13]

Biswas K, He J, Blum ID, et al. Nature 2012;489(7416): 414-8. https://doi.org/10.1038/nature11439.

[14]

Xym A, Xlsb C, Lcz A, et al. J Mater Sci Technol 2022;114: 55-61. https://doi.org/10.1016/j.jmst.2021.12.002.

[15]

Snyder J. Nat Mater 2008;7(2): 105-14. https://doi.org/10.1038/nmat2090.

[16]

Zhang D, Bai HC, Li ZL, et al. Chin Phys B 2018;27(4): 47206. https://doi.org/10.1088/1674-1056/27/4/047206.

[17]

Garcia, Gregorio, Palacios, et al. Inorg Chem 2018;57(12): 7321-33. https://doi.org/10.1021/acs.inorgchem.8b00980.

[18]

Dat T, Do, et al. J Alloys Compd 2015;625(C): 346-54. https://doi.org/10.1016/j.jallcom.2014.11.031.

[19]

Chang CH, Chen CL, Chiu WT, et al. Mater Lett 2017;186(Complete): 227-30. https://doi.org/10.1016/j.matlet.2016.10.011.

[20]

Yang C, Huang F, Wu L, et al. J Phys Appl Phys 2011;44(29): 295404. https://doi.org/10.1088/0022-3727/44/29/295404.

[21]

Wei TR, Wang H, Gibbs ZM, et al. J Mater Chem 2014;2(33): 13527-33. https://doi.org/10.1039/C4TA01957A.

[22]

Li JM, Li D, Song CJ, et al. Intermetallics 2019;109: 68-73. https://doi.org/10.1016/j.intermet.2019.03.009.

[23]

Zhang D, Yang J, Jiang Q, et al. Mater Des 2016;98: 150-4. https://doi.org/10.1016/j.matdes.2016.03.001.

[24]

A TZ, C LWAB, A SZ, et al. Nano Energy 2018;49: 221-9. https://doi.org/10.1016/j.nanoen.2018.04.035.

[25]

Park W, Hwang Hyeonseok, Kim Sohee, Park Sungbin, Jang Kwang-Suk. ACS Appl Mater Interfaces 2021;13(6): 7208-15.

[26]

Li Y, Wang X, Liu G, et al. Scripta Mater 2019;172:88-92. https://doi.org/10.1016/j.scriptamat.2019.07.016.

[27]

Yang J, Zhou Z, Jiang Q. J Am Ceram Soc 2017;100(12): 5723-30. https://doi.org/10.1111/jace.15088.

[28]

Shi XL, Tao X, Zou J, et al. Adv Sci 2020;7(7): 1902923. https://doi.org/10.1002/advs.201902923.

[29]

Qiu XF, Zhu JJ, Pu L, et al. Inorg Chem Commun 2004;7(3): 319-21. https://doi.org/10.1016/j.inoche.2003.11.015.

[30]

Xu Y, Ren Z, Ren W, et al. Mater Lett 2008;62(4-5): 763-6. https://doi.org/10.1016/j.matlet.2007.06.064.

[31]

Zhu TJ, Liu YQ, Zhao XB. Mater Res Bull 2008;43(11): 2850-4. https://doi.org/10.1016/j.materresbull.2008.01.001.

[32]

Fitzgerel RK, Verhoek FH. J Chem Educ 1960;37(10): 545. https://doi.org/10.1021/ed037p545.

[33]

Laing M. J Chem Educ 2006;83(10): 1499-504. https://doi.org/10.1021/ed083p1499.

[34]

Kim HS, Gibbs ZM, Tang Y, et al. Apl Mater 2015;3(4): 41506. https://doi.org/10.1063/1.4908244.

[35]

E BP. Phys Rev B 1994;50(24): 17953-79. https://doi.org/10.1103/PhysRevB.50.17953.

[36]

John P, Perdew, et al. Phys Rev Lett 1996;77(18): 3865-8. https://doi.org/10.1103/PhysRevLett.77.3865.

[37]

Bw A, Sz A, Qw B, et al. Nano Energy 2020;71:104658. https://doi.org/10.1016/j.nanoen.2020.104658.

[38]

Baroni, Gironcoli D, Stefano, et al. Rev Mod Phys 2001;73(2): 515-62. https://doi.org/10.1103/RevModPhys.73.515.

[39]

Cahill DG, Watson SK, Pohl RO. Phys Rev B 1992;46(10): 6131. https://doi.org/10.1103/PhysRevB.46.6131.

[40]

Cordero B, Gómez V, Platero-Prats AE, et al. Dalton Trans: Int J Integrated Care 2008;21:2832-8. https://doi.org/10.1039/b801115j.

[41]

Teng ZW, Liu CS, Yan XH. Nanoscale 2017;9(17): 5445-50. https://doi.org/10.1039/C6NR09454F.

[42]

Scanlon DO, Dunnill CW, Buckeridge J, et al. Nat Mater 2013;12(9): 798. https://doi.org/10.1038/nmat3697.

[43]

Reyes-Coronado D, Rodrأجguez-Gattorno G, Espinosa-Pesqueira ME, et al. Nanotechnology 2008;19(14): 145605. https://doi.org/10.1088/0957-4484/19/14/145605.

[44]

Narducci D, Selezneva E, Cerofolini G, et al. J Solid State Chem 2012;193:19-25. https://doi.org/10.1016/j.jssc.2012.03.032.

[45]

Heremans JP, Jovovic V, Toberer ES, et al. Science 2008;321(5888): 554-7. https://doi.org/10.1126/science.1159725.

[46]

Zhang D, Yang J, Bai H, et al. J Mater Chem 2019;7(29): 17648-54. https://doi.org/10.1039/C9TA05115E.

[47]

Ren T, Han Z, Ying P, et al. ACS Appl Mater Interfaces 2019;11(35): 32192-9. https://doi.org/10.1021/acsami.9b12256.

[48]

Zaitsev SV, Moon J, Takagi H, et al. Adv Powder Technol 2000;11(2): 211-20. https://doi.org/10.1163/156855200750172321.

[49]

Kitagawa H, Kunisa Da T, Yama Da Y, et al. J Alloys Compd 2010;508(2): 582-6. https://doi.org/10.1016/j.jallcom.2010.08.125.

[50]

Okinaka N, Akiyama T. Jpn J Appl Phys 2006;45(9A): 7009-10. https://doi.org/10.1143/JJAP.45.7009.

[51]

Wang W, Wang Y, Bo L, et al. J Alloys Compd 2021;878:160358. https://doi.org/10.1016/j.jallcom.2021.160358.

[52]

Wang B, Wang Y, Zheng S, et al. J Alloys Compd 2019;806:676-82. https://doi.org/10.1016/j.jallcom.2019.07.292.

[53]

Wang B, Zheng S, Chen Y, et al. Mater Today Energy 2020;19:100620. https://doi.org/10.1016/j.mtener.2020.100620.

[54]

Wang B, Zheng S, Chen Y, et al. J Phys Chem C 2020;124(19): 10336-43. https://doi.org/10.1021/acs.jpcc.0c01465.

[55]

Huang Y, Zhang B, Li J, et al. Adv Mater 2022:e2109952. https://doi.org/10.1002/adma.202109952.e2109952.

Journal of Materiomics
Pages 929-936
Cite this article:
Wei S, Wang B, Zhang Z, et al. Achieving high thermoelectric performance through carrier concentration optimization and energy filtering in Cu3SbSe4-based materials. Journal of Materiomics, 2022, 8(5): 929-936. https://doi.org/10.1016/j.jmat.2022.04.007

367

Views

12

Crossref

13

Web of Science

13

Scopus

Altmetrics

Received: 16 March 2022
Revised: 16 April 2022
Accepted: 21 April 2022
Published: 30 April 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return