AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Ultra-slim electrostrains with superior temperature-stability in lead-free sodium niobate-based ferroelectric perovskite

Ruiyi JingaQingyuan HuaLeiyang ZhangaYuan SunbJiagang WucD.O. AlikindV. Ya ShurdXiaoyong WeiaHongliang DueYunfei Changb( )Li Jina( )
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
Department of Materials Science, Sichuan University, Chengdu, 610065, China
School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
Multifunctional Electronic Ceramics Laboratory, College of Engineering, Xi'an International University, Xi'an, 710077, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Large electrostrains with high temperature stability and low hysteresis are essential for applications in high-precision actuator devices. However, achieving simultaneously all three of the aforementioned features in ferroelectric ceramics remains a considerable challenge. In this work, we firstly report a high unipolar electrostrain (0.12% at 60 kV/cm) in (1–x)NaNbO3-x[(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3] (NN-xBCZT) ferroelectric polycrystalline ceramics with excellent thermal stability (variation less than 10% in the temperature range of 30–160 ℃) and ultra-low hysteresis (< 6%). Secondly, the high-field electrostrain response is dominated by the intrinsic electrostrictive effect, which may account for more than 80% of the electrostrain. Furthermore, due to the thermal stability of the polarization in the pure tetragonal phase, the large electrostrain demonstrates extraordinarily high stability from room temperature to 140 ℃. Finally, in-situ piezoelectric force microscopy reveals ultra-highly stable domain structures, which also guarantee the thermal stability of the electrostrain in (NN-xBCZT ferroelectrics ceramics. This study not only clarifies the origin of thermally stable electrostrain in NN-xBCZT ferroelectric perovskite in terms of electrostrictive effect, but also provides ideas for developing applicable ferroelectric ceramic materials used in actuator devices with excellent thermal stability.

References

[1]

Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J. J Electroceram 2012;29:71-93. https://doi.org/10.1007/s10832-012-9742-3.

[2]

Hao J, Li W, Zhai J, Chen H. Mater Sci Eng R Rep 2019;135:1-57. https://doi.org/10.1016/j.mser.2018.08.001.

[3]

Fan P, Liu K, Ma W, Tan H, Zhang Q, Zhang L, Zhou C, Salamon D, Zhang S-T, Zhang Y, Nan B, Zhang H. J Materiomics 2021;7:508-44. https://doi.org/10.1016/j.jmat.2020.11.009.

[4]

Buixaderas E, Nuzhnyy D, Vaněk P, Gregora I, Petzelt J, Porokhonskyy V, Jin L, Damjanović D. Phase Transitions 2010;83:917-30. https://doi.org/10.1080/01411594.2010.509601.

[5]

Buixaderas E, Gregora I, Savinov M, Hlinka J, Jin L, Damjanovic D, Malic B. Phys Rev B 2015;91:14104. https://doi.org/10.1103/PhysRevB.91.014104.

[6]

Damjanovic D, Klein N, Li J, Porokhonskyy V. Funct Mater Lett 2010;3:5-13. https://doi.org/10.1142/s1793604710000919.

[7]

Li F, Wang L, Jin L, Lin D, Li J, Li Z, Xu Z, Zhang S. IEEE Trans Ultrason Ferroelectrics Freq Control 2015;62:18-32. https://doi.org/10.1109/TUFFC.2014.006660.

[8]

Zhang S, Shrout TR. IEEE Trans Ultrason Ferroelectrics Freq Control 2010;57:2138-46. https://doi.org/10.1109/tuffc.2010.1670.

[9]

Rödel J, Jo W, Seifert KTP, Anton E-M, Granzow T, Damjanovic D. J Am Ceram Soc 2009;92:1153-77. https://doi.org/10.1111/j.1551-2916.2009.03061.x.

[10]

Shrout TR, Zhang SJ. J Electroceram 2007;19:113-26. https://doi.org/10.1007/s10832-007-9047-0.

[11]

Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. J Eur Ceram Soc 2015;35:1659-81. https://doi.org/10.1016/j.jeurceramsoc.2014.12.013.

[12]

Wu J, Xiao D, Zhu J. Chem Rev 2015;115:2559-95. https://doi.org/10.1021/cr5006809.

[13]

Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son JS, Ahn CW, Jo W. J Materiomics 2016;2:1-24. https://doi.org/10.1016/j.jmat.2015.12.002.

[14]

Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, RossettiJr GA, Rödel J. Appl Phys Rev 2017;4:41305. https://doi.org/10.1063/1.4990046.

[15]

Liu W, Ren X. Phys Rev Lett 2009;103:257602. https://doi.org/10.1103/PhysRevLett.103.257602.

[16]

Yuan R, Liu Z, Balachandran PV, Xue D, Zhou Y, Ding X, Sun J, Xue D, Lookman T. Adv Mater 2018;30:1702884. https://doi.org/10.1002/adma.201702884.

[17]

Zhang S-T, Kounga AB, Aulbach E, Ehrenberg H, Rödel J. Appl Phys Lett 2007;91:112906. https://doi.org/10.1063/1.2783200.

[18]

Jing R, Zhang L, Hu Q, Alikin DO, Shur VY, Wei X, Zhang L, Liu G, Zhang H, Jin L. J Materiomics 2022;8:335-46.https://doi.org/10.1016/j.jmat.2021.09.002.

[19]

Park SE, Shrout TR. J Appl Phys 1997;82:1804-11. https://doi.org/10.1063/1.365983.

[20]

Xu K, Li J, Lv X, Wu JG, Zhang XX, Xiao DQ, Zhu JG. Adv Mater 2016;28:8519-23. https://doi.org/10.1002/adma.201601859.

[21]

Zhang L, Jing R, Huang Y, Hu Q, Alikin DO, Shur VY, Wang D, Wei X, Zhang L, Liu G, Jin L. J Eur Ceram Soc 2022;42:944-53. https://doi.org/10.1016/j.jeurceramsoc.2021.11.037.

[22]

Zhang MH, Wang K, Du YJ, Dai G, Sun W, Li G, Hu D, Thong HC, Zhao C, Xi XQ, Yue ZX, Li JF. J Am Chem Soc 2017;139:3889-95. https://doi.org/10.1021/jacs.7b00520.

[23]

Zheng T, Wu HJ, Yuan Y, Lv X, Li Q, Men TL, Zhao C, Xiao DQ, Wu JG, Wang K, Li JF, Gu YL, Zhu J, Pennycook SJ. Energy Environ Sci 2017;10:528-37. https://doi.org/10.1039/c6ee03597c.

[24]

Lu X, Hou L, Jin L, Wang L, Tian Y, Yu K, Hu Q, Zhang L, Wei X. Ceram Int 2018;44:5492-9. https://doi.org/10.1016/j.ceramint.2017.12.188.

[25]

Zuo R, Qi H, Fu J. Appl Phys Lett 2016;109:22902. https://doi.org/10.1063/1.4958937.

[26]

Qi H, Zuo R, Fu J, Dou M. Appl Phys Lett 2017;110:112903. https://doi.org/10.1063/1.4978694.

[27]

Lv X, Chen Y, Wu J. J Am Ceram Soc 2018;101:5596-603. https://doi.org/10.1111/jace.15874.

[28]

Lv X, Chen Y, Wu B, Zhu J, Xiao D, Wu J. Inorg Chem 2018;57:10383-9. https://doi.org/10.1021/acs.inorgchem.8b01602.

[29]

Damjanovic D. Rep Prog Phys 1998;61:1267-324. https://doi.org/10.1088/0034-4885/61/9/002.

[30]

Ren XB. Nat Mater 2004;3:91-4. https://doi.org/10.1038/nmat1051.

[31]

Damjanovic D. J Am Ceram Soc 2005;88:2663-76. https://doi.org/10.1111/j.1551-2916.2005.00671.x.

[32]

Pramanick A, Damjanovic D, Daniels JE, Nino JC, Jones JL. J Am Ceram Soc 2011;94:293-309. https://doi.org/10.1111/j.1551-2916.2010.04240.x.

[33]

Liu L, Rojac T, Damjanovic D, Di Michiel M, Daniels J. Nat Commun 2018;9:4928. https://doi.org/10.1038/s41467-018-07363-y.

[34]

Narayan B, Malhotra JS, Pandey R, Yaddanapudi K, Nukala P, Dkhil B, Senyshyn A, Ranjan R. Nat Mater 2018;17:427-31. https://doi.org/10.1038/s41563-018-0060-2.

[35]

Liu X, Tan X. Adv Mater 2016;28:574-8. https://doi.org/10.1002/adma.201503768.

[36]

Zhu Q, Zhao K, Xu R, Feng Y, Xu Z, Wei X. J Alloys Compd 2021;877:160108. https://doi.org/10.1016/j.jallcom.2021.160108.

[37]

Jin L, Li F, Zhang S. J Am Ceram Soc 2014;97:1-27. https://doi.org/10.1111/jace.12773.

[38]

Jones JL, Hoffman M, Daniels JE, Studer AJ. Appl Phys Lett 2006;89:92901. https://doi.org/10.1063/1.2338756.

[39]

Mishra SK, Choudhury N, Chaplot SL, Krishna PSR, Mittal R. Phys Rev B 2007;76:24110. https://doi.org/10.1103/PhysRevB.76.024110.

[40]

Zhang M-H, Fulanović L, Egert S, Ding H, Groszewicz PB, Kleebe H-J, MolinaLuna L, Koruza J. Acta Mater 2020;200:127-35. https://doi.org/10.1016/j.actamat.2020.09.002.

[41]

Jin L, Qiao J, Hou L, Tian Y, Hu Q, Wang L, Lu X, Zhang L, Du H, Wei X, Liu G, Yan Y. Ceram Int 2018;44:21816-24. https://doi.org/10.1016/j.ceramint.2018.08.286.

[42]

Wang W, Zhang L, Jing R, Hu Q, Alikin DO, Ya Shur V, Wei X, Liu G, Yan Y, Jin L. Chem Eng J 2022;434:134678. https://doi.org/10.1016/j.cej.2022.134678.

[43]

Shvartsman VV, Lupascu DC. J Am Ceram Soc 2012;95:1-26. https://doi.org/10.1111/j.1551-2916.2011.04952.x.

[44]

Wang T, Hu J, Yang H, Jin L, Wei X, Li C, Yan F, Lin Y. J Appl Phys 2017;121:84103. https://doi.org/10.1063/1.4977107.

[45]

Li F, Jin L, Xu Z, Zhang S. Appl Phys Rev 2014;1:11103. https://doi.org/10.1063/1.4861260.

[46]

Wang K, Yao F-Z, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li J-F, Roedel J. Adv Funct Mater 2013;23:4079-86. https://doi.org/10.1002/adfm.201203754.

[47]

Haun MJ, Furman E, Jang SJ, Cross LE. Ferroelectrics 1989;99:13-25. https://doi.org/10.1080/00150198908221436.

[48]

Li F, Jin L, Xu Z, Wang D, Zhang S. Appl Phys Lett 2013;102:152910. https://doi.org/10.1063/1.4802792.

[49]

Li F, Jin L, Guo R. Appl Phys Lett 2014;105:232903. https://doi.org/10.1063/1.4904019.

[50]

Hao J, Xu Z, Chu R, Li W, Du J. J Mater Sci 2015;50:5328-36. https://doi.org/10.1007/s10853-015-9080-3.

[51]

Zuo R, Qi H, Fu J, Li J, Shi M, Xu Y. Appl Phys Lett 2016;108:232904. https://doi.org/10.1063/1.4953457.

[52]

Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G. ACS Appl Mater Interfaces 2016;8:31109-19. https://doi.org/10.1021/acsami.6b08879.

[53]

Hao J, Xu Z, Chu R, Li W, Fu P, Du J, Li G. J Eur Ceram Soc 2016;36:4003-14. https://doi.org/10.1016/j.jeurceramsoc.2016.06.020.

[54]

Lu X, Hou L, Jin L, Wang D, Hu Q, Alikin DO, Turygin AP, Wang L, Zhang L, Wei X. J Eur Ceram Soc 2018;38:3127-35. https://doi.org/10.1016/j.jeurceramsoc.2018.03.026.

[55]

Yin J, Liu G, Zhao C, Huang Y, Li Z, Zhang X, Wang K, Wu J. J Mater Chem A 2019;7:13658-70. https://doi.org/10.1039/C9TA03140E.

[56]

Jin L, Luo W, Hou L, Tian Y, Hu Q, Wang L, Zhang L, Lu X, Du H, Wei X, Yan Y, Liu G. J Eur Ceram Soc 2019;39:295-304. https://doi.org/10.1016/j.jeurceramsoc.2018.09.005.

[57]

Huang Y, Zhao C, Yin J, Lv X, Ma J, Wu J. J Mater Chem A 2019;7:17366-75. https://doi.org/10.1039/C9TA05681E.

[58]

Jin L, Luo W, Wang L, Tian Y, Hu Q, Hou L, Zhang L, Lu X, Du H, Wei X, Liu G, Yan Y. J Eur Ceram Soc 2019;39:277-86. https://doi.org/10.1016/j.jeurceramsoc.2018.09.019.

[59]

Wu B, Zhao C, Huang Y, Yin J, Wu W, Wu J. ACS Appl Mater Interfaces 2020;12:25050-7. https://doi.org/10.1021/acsami.0c06131.

[60]

Zheng T, Wu J. Mater Horiz 2020;7:3011-20. https://doi.org/10.1039/D0MH01296C.

[61]

Liu X, Han J, Huang Y, Yin J, Wu J. J Am Ceram Soc 2021;104:1391-401. https://doi.org/10.1111/jace.17537.

[62]

Morozov MI, Damjanovic D. J Appl Phys 2010;107:34106. https://doi.org/10.1063/1.3284954.

[63]

Jin L, Qiao J, Hou L, Wang L, Zhang L, Lu X, Du H, Wei X, Yan Y, Liu G. J Alloys Compd 2019;776:599-605. https://doi.org/10.1016/j.jallcom.2018.10.307.

[64]

Bai W, Li L, Wang W, Shen B, Zhai J. Solid State Commun 2015;206:22-5. https://doi.org/10.1016/j.ssc.2015.01.004.

[65]

Bai W, Chen D, Zheng P, Zhang J, Shen B, Zhai J, Ji Z. Ceram Int 2017;43:3339-45. https://doi.org/10.1016/j.ceramint.2016.11.175.

[66]

Bai W, Wang L, Zheng P, Wen F, Yuan Y, Ding M, Chen D, Zhai J, Ji Z. Ceram Int 2018;44:8628-34. https://doi.org/10.1016/j.ceramint.2018.02.081.

[67]

Zhang S-T, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D. Adv Mater 2009;21:4716-20. https://doi.org/10.1002/adma.200901516.

[68]

Lu X, Wang L, Jin L, Hu Q, Tian Y, Hou L, Yu K, Zhang L, Wei X, Yan Y, Liu G. J Alloys Compd 2018;753:558-65. https://doi.org/10.1016/j.jallcom.2018.04.257.

[69]

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M. Nature 2004;432:84-7. https://doi.org/10.1038/nature03028.

[70]

Zhang M-H, Wang K, Zhou J-S, Zhou J-J, Chu X, Lv X, Wu J, Li J-F. Acta Mater 2017;122:344-51. https://doi.org/10.1016/j.actamat.2016.10.011.

[71]

Liu Q, Li J-F, Zhao L, Zhang Y, Gao J, Sun W, Wang K, Li L. J Mater Chem C 2018;6:1116-25. https://doi.org/10.1039/C7TC04813K.

Journal of Materiomics
Pages 1230-1238
Cite this article:
Jing R, Hu Q, Zhang L, et al. Ultra-slim electrostrains with superior temperature-stability in lead-free sodium niobate-based ferroelectric perovskite. Journal of Materiomics, 2022, 8(6): 1230-1238. https://doi.org/10.1016/j.jmat.2022.05.002

349

Views

10

Crossref

11

Web of Science

12

Scopus

Altmetrics

Received: 27 March 2022
Revised: 05 May 2022
Accepted: 11 May 2022
Published: 17 May 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return