AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT:PSS thermoelectric composites

School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Carbon nanotube film (CNTF) with two-dimensional CNT network structure is adopted to prepare CNTF/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thermoelectric composites, which overcomes the disadvantages of low content, easy aggregation, and random orientation of CNTs when dispersed in polymer. A vacuum-assisted filtration method was proposed, which can uniformly and sufficiently penetrate the polymer into CNTF along thickness direction for fabrication of CNTF/PEDOT:PSS composites. A highest electrical conductivity of 806.2 S/cm at 300 K was achieved for the composites with 60 wt% PEDOT:PSS loading, which was 51.0% higher than that of the original CNTF (534.1 S/cm). A maximum power factor of 339.6 μW·m−1·K−2 at 320 K was achieved with a corresponding Seebeck coefficient of 67.7 μV/K. This study provides a universal method for fabrication of other kinds of CNTF/conductive polymer thermoelectric composites.

References

[1]

Du Y, Xu J, Paul B, Eklund P. Appl Mater Today 2018;12:366-88. https://doi.org/10.1016/j.apmt.2018.07.004.

[2]

Bahk J-H, Fang H, Yazawa K, Shakouri A. J Mater Chem C 2015;3:10362-74.https://doi.org/10.1039/c5tc01644d.

[3]

Wang H, Yu C. Joule 2019;3:53-80. https://doi.org/10.1016/j.joule.2018.10.012.

[4]

Chung S-H, Kim DH, Kim H, Kim H, Jeong SW. Mater Today Commun 2020;23:100867. https://doi.org/10.1016/j.mtcomm.2019.100867.

[5]

Kim G-H, Shao L, Zhang K, Pipe KP. Nat Mater 2013;12:719-23. https://doi.org/10.1038/nmat3635.

[6]

Song H, Qiu Y, Wang Y, Cai K, Li D, Deng Y, et al. Compos Sci Technol 2017;153:71-83.https://doi.org/10.1016/j.compscitech.2017.10.006.

[7]

Kim D, Kim Y, Choi K, Grunlan JC, Yu C. ACS Nano 2009;4:513-23. https://doi.org/10.1021/nn9013577.

[8]

Du Y, Shi Y, Meng Q, Shen SZ. Synth Met 2020;261:116318. https://doi.org/10.1016/j.synthmet.2020.116318.

[9]

Lee W, Kang YH, Lee JY, Jang K-S, Cho SY. RSC Adv 2016;6:53339-44. https://doi.org/10.1039/c6ra08599g.

[10]

Zhang L, Harima Y, Imae I. Org Electron 2017;51:304-7. https://doi.org/10.1016/j.orgel.2017.09.030.

[11]

Liu L, Ma W, Zhang Z. Small 2011;7:1504-20. https://doi.org/10.1002/smll.201002198.

[12]

Li Y-L, Kinloch IA, Windle AH. Science 2004;304:276-8. https://doi.org/10.1126/science.1094982.

[13]

Liu X, Wei B, Farha FI, Liu W, Li W, Qiu Y, et al. Comp Part A (Appl Sci Manuf) 2020;130:105728. https://doi.org/10.1016/j.compositesa.2019.105728.

[14]

Liu X, Xu F, Zhang K, Wei B, Gao Z, Qiu Y. Compos Sci Technol 2017;145:114-21. https://doi.org/10.1016/j.compscitech.2017.04.004.

[15]

Li Z, Dharap P, Nagarajaiah S, Barrera EV, Kim JD. Adv Mater 2004;16:640-3.https://doi.org/10.1002/adma.200306310.

[16]

Xu F, Wei B, Liu W, Zhu H, Zhang Y, Qiu Y. J Mater Sci 2015;50:8166-74.https://doi.org/10.1007/s10853-015-9395-0.

[17]

Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H. Nano Energy 2021;89:106487.https://doi.org/10.1016/j.nanoen.2021.106487.

[18]

Wang K-Y, Tsai W-L, Yang P-Y, Chou C-H, Li Y-R, Liao C-Y, et al. Jpn J Appl Phys 2015;54:04DL01. https://doi.org/10.7567/jjap.54.04dl01.

[19]

Nešpůrek S, Kuberský P, Polanský R, Trchová M, Šebera J, Sychrovský V. Phys Chem Chem Phys 2022;24:541-50. https://doi.org/10.1039/d1cp03899k.

[20]

Choi J, Lee J, Choi J, Jung D, Shim SE. Synth Met 2010;160:1415-21. https://doi.org/10.1016/j.synthmet.2010.04.021.

[21]

Shi H, Liu C, Jiang Q, Xu J, Lu B, Jiang F, et al. Nanotechnology 2015;26:245401.https://doi.org/10.1088/0957-4484/26/24/245401.

[22]

Kim JH, Kang TJ. Mater Today Commun 2020;25:101568. https://doi.org/10.1016/j.mtcomm.2020.101568.

[23]

Deng W, Deng L, Li Z, Zhang Y, Chen G. Acs Appl Mater Inter 2021;13:12131-40. https://doi.org/10.1021/acsami.1c01059.

Journal of Materiomics
Pages 1213-1217
Cite this article:
Huang J, Liu X, Du Y. Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT:PSS thermoelectric composites. Journal of Materiomics, 2022, 8(6): 1213-1217. https://doi.org/10.1016/j.jmat.2022.05.005

377

Views

16

Crossref

16

Web of Science

17

Scopus

Altmetrics

Received: 11 November 2021
Revised: 22 May 2022
Accepted: 23 May 2022
Published: 30 May 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return