AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Revealing structure behavior behind the piezoelectric performance of prototype lead-free Bi0.5Na0.5TiO3–BaTiO3 under in-situ electric field

Huajie Luoa,bShiyu TangdHui Liua( )Zheng SunaBaitao Gaoa,bYang RencHe QibShiqing Denga( )Houbing Huangd( )Jun Chena,b
Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
School of Materials Science & Engineering, Beijing Institute of Technology, Haidian District, Beijing, 100081, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Bi0.5Na0.5TiO3–BaTiO3 (BNT–100xBT) ceramics are promising candidates for piezoelectric applications. The correlation between their structure and piezoelectric properties has attracted considerable interest. Herein, the structures of 6BT and 7BT with distinct piezoelectricity are investigated via in-situ synchrotron X-ray diffraction and transmission electron microscopy. It is found that although both compositions present morphotropic phase boundary (MPB) features with coexisting R3c and P4bm phases, their refined structures are significantly different. 6BT is composed of the R3c phase with a small P4bm fraction after electrical poling, while 7BT presents comparable fractions of the two phases. Less pronounced structure distortion and oxygen octahedral tilting occur in 7BT, which favor the phase transformation, resulting in an enhanced piezoelectricity. This enhancement driven by structural flexibility is elucidated by phenomenological analysis. These results demonstrate that the design of high piezoelectricity at MPBs should consider not only the phase-coexisting states but also the refined crystal structure.

References

[1]

Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J. J Electroceram 2012;29:71-93.

[2]

Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. J Eur Ceram Soc 2015;35:1659-81.

[3]

Paterson R, Nagata H, Tan X, Daniels JE, Hinterstein M, Ranjan R, Groszewicz PB, Jo W, Jones JL. MRS Bull 2018;43:600-6.

[4]

Zhang S, Malič B, Li J, Rödel J. J Mater Res 2021;36:985-95.

[5]

Takenaka T, Maruyama K, Sakata K. Jpn J Appl Phys 1991;30:2236.

[6]

Zhu D, Liu H, Luo H, Sheng S, Chen J. Ceram Int 2020;46:3708-14.

[7]

Daniels JE, Jo W, Rödel J, Jones JL. Appl Phys Lett 2009;95:032904.

[8]

Simons H, Daniels J, Jo W, Dittmer R, Studer A, Avdeev M, Rödel J, Hoffman M. Appl Phys Lett 2011;98:082901.

[9]

Jo W, Daniels JE, Jones JL, Tan X, Thomas PA, Damjanovic D, Rödel J. J Appl Phys 2011;109:014110.

[10]

Hinterstein M, Schmitt LA, Hoelzel M, Jo W, Rödel J, Kleebe HJ, Hoffman M. Appl Phys Lett 2015;106:222904.

[11]

Liu X, Tan X. Adv Mater 2016;28:574-8.

[12]

Fan P, Zhang Y, Zhang S-T, Xie B, Zhu Y, Marwat MA, Ma W, Liu K, Shu L, Zhang H. J Materiomics 2019;5:480-8.

[13]

Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S. J Materiomics 2019;5:385-93.

[14]

Liu H, Sun S, Pan Z, Fan L, Ren Y, Xing X, Chen J. J Eur Ceram Soc 2019;39:5277-84.

[15]

Liu G, Dong J, Zhang L, Yan Y, Jing R, Jin L. J Materiomics 2020;6:677-91.

[16]

Lalitha KV, Hinterstein M, Lee KY, Yang T, Chen LQ, Groszewicz PB, Koruza J, Rödel J. Phys Rev B 2020;101:174108.

[17]

Adhikary GD, Mahale B, Rao BN, Senyshyn A, Ranjan R. Phys Rev B 2021;103:184106.

[18]

Luo H, Liu H, Deng S, Hu S, Wang L, Gao B, Sun S, Ren Y, Qiao L, Chen J. Acta Mater 2021;208:116711.

[19]

Luo H, Qi H, Sun S, Wang L, Ren Yang, Liu H, Deng S, Chen J. Acta Mater 2021;218:117202.

[20]

Ma C, Tan X, Dul'Kin E, Roth M. J Appl Phys 2010;108:104105.

[21]

Ma C, Tan X. J Am Ceram Soc 2011;94:4040-4.

[22]

Ma C, Guo H, Beckman SP, Tan X. Phys Rev Lett 2012;109:107602.

[23]

Khansur NH, Hinterstein M, Wang Z, Groh C, Jo W, Daniels JE. Appl Phys Lett 2015;107:242902.

[24]

Schader FH, Wang Z, Hinterstein M, Daniels JE, Webber KG. Phys Rev B 2016;93:134111.

[25]

Yao J, Monsegue N, Murayama M, Leng W, Reynolds WT, Zhang Q, Li J, Ge W, Viehland D. Appl Phys Lett 2012;100:012901.

[26]

Kitanaka Y, Ogino M, Hirano K, Noguchi Y, Miyayama M, Kagawa Y, Moriyoshi C, Kuroiwa Y, Torii S, Kamiyama T. Jpn J Appl Phys 2013;52:09KD01.

[27]

Liu H, Chen J, Huang H, Fan L, Ren Y, Pan Z, Deng J, Chen L, Xing X. Phys Rev Lett 2018;120:055501.

[28]

Liu H, Fan L, Sun S, Lin K, Ren Y, Tan X, Xing X, Chen J. Acta Mater 2020;184:41-9.

[29]

Fan L, Chen J, Ren Y, Pan Z, Zhang L, Xing X. Phys Rev Lett 2016;116:027601.

[30]

Uchida N, Ikeda T. Jpn J Appl Phys 1967;6:1079.

[31]

Jones GO, Thomas PA. Acta Crystallogr B 2002;58:168-78.

[32]

Wang L, Sun S, Luo H, Ren Y, Liu H, Xing X, Chen J. J Mater Chem 2021;9:2367-74.

[33]

Otonicar M, Park J, Logar M, Esteves G, Jancar B. Acta Mater 2017;127:319-31.

[34]

Yan K, Ren S, Fang M, Ren X. Acta Mater 2017;134:195-202.

[35]

Daymond MR. J Appl Phys 2004;96:4263-72.

[36]

Li Y, Chen Y, Zhang Z, Kleppe A, Hall DA. Acta Mater 2019;168:411-25.

[37]

Jones JL, Slamovich EB, Bowman KJ. J Appl Phys 2005;97:034113.

[38]

Liu L, Rojac T, Damjanovic D, Michiel MD, Daniels J. Nat Commun 2018;9:1-10.

[39]

Calisir I, Kleppe AK, Feteira A, Hall DA. J Mater Chem C 2019;7:10218-30.

[40]

Wang G, Fan Z, Murakami S, Lu Z, Hall DA, Sinclair DC, Feteira A, Tan X, Jones JL, Kleppe AK, Wang D, Reaney IM. J Mater Chem 2019;7:21254-63.

[41]

Lu Z, Wang G, Li L, Huang Y, Feteira A, Bao W, Kleppe AK, Xu F, Wang D, Reaney IM. Mater Today Phys 2021;19:100426.

[42]

Calisir I, Kleppe AK, Feteira A, Hall DA. J Mater Chem C 2019;7:10218-30.

[43]

Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee KY, Studer A, Hinterstein M, Wang K, Zhang X, Li L, Li J. Natl Sci Rev 2020;7:355-65.

[44]

Damjanovic D. Appl Phys Lett 2010;97:062906.

[45]

Hayward SA, Salje EKH. J Phys Condens Matter 2002;14:L599.

Journal of Materiomics
Pages 1104-1112
Cite this article:
Luo H, Tang S, Liu H, et al. Revealing structure behavior behind the piezoelectric performance of prototype lead-free Bi0.5Na0.5TiO3–BaTiO3 under in-situ electric field. Journal of Materiomics, 2022, 8(6): 1104-1112. https://doi.org/10.1016/j.jmat.2022.07.004

333

Views

10

Crossref

10

Web of Science

11

Scopus

Altmetrics

Received: 22 June 2022
Revised: 06 July 2022
Accepted: 19 July 2022
Published: 13 August 2022
© 2022 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return