AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bismuthene quantum dots integrated D-shaped fiber as saturable absorber for multi-type soliton fiber lasers

Han Pana,1Hongwei Chua,1Ying LibZhongben PanaJia ZhaoaShengzhi ZhaoaWeichun Huangc( )Dechun Lia( )
School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, 72 Binhai Road, Qingdao, 266237, China
Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda South Road, Jinan, 250100, China
School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, China

1 These authors contributed equally to this work]]>

Show Author Information

Abstract

In the present work, the uniformly sized bismuthene quantum dots (BiQDs) with an average diameter of 26 nm were fabricated via the solvothermal approach. By transferring the BiQDs onto the plane of micro-machined D-shaped fiber (DSF), a new type of saturable absorber (SA) was successfully prepared. Based on the evanescent field effect of D-shaped fiber, the prepared SA exhibits excellent saturable absorption properties with the maximum modulation depth of 5.1% at around 1.5 μm. To further investigate its potential applications in ultrafast photonics, we demonstrated passive mode-locking operation in the erbium-doped fiber laser (EDFL) with BiQDs/DSF-SA. The conventional soliton pulses with duration of 835 fs at the repetition rate of 9.23 MHz and dissipative soliton pulses with duration of 575 fs at the repetition rate of 7.83 MHz were generated successfully. In addition, stable bound state of solitons with the pulse duration of 1.04 ps and sub-pulse time interval of 15.9 ps were also obtained based on the conventional soliton state by adjusting the pump power and polarization state. Our work reveals the great potential and capacity of BiQDs/DSF-SA in soliton mode-locking operations and promotes the explorative investigation of bismuth-based optoelectronic devices.

References

[1]

Sugioka K. Progress in ultrafast laser processing and future prospects. Nanophotonics 2017;6:393-413.

[2]

Han Y, Guo Y, Gao B, Ma C, Zhang R, Zhang H. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers. Prog Quant Electron 2020;71:00264.

[3]

Bosworth B, Stroud J, Tran D, Tran T, Chin S, Foster M. High-speed flow microscopy using compressed sensing with ultrafast laser pulses. Opt Express 2015;23:10521-32.

[4]

Xu H, Cheng Y, Chin S, Sun H. Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photon Rev 2015;9:275-93.

[5]
Fermann M, Galvanauskas A, Sucha G. Ultrafast lasers-technology and applications. New York, USA: Marcel Dekker; 2003.
[6]

Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 2016;5. e16133-e16133.

[7]

Fermann M, Hartl I. Ultrafast fibre lasers. Nat Photonics 2013;7:868-74.

[8]

Tuo M, Xu C, Mu H, Bao X, Wang Y, Xiao S, Ma W, Li L, Tang D, Zhang H, Premaratne M, Sun B, Cheng HM, Li S, Ren W, Bao Q. Ultrathin 2D transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics 2018;5: 1808-16.

[9]

Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale 2018;10:17617-22.

[10]

Xie Z, Zhang F, Liang Z, Fan T, Li Z, Jiang X, Chen H, Li J, Zhang H. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon Res 2019;7:494-502.

[11]

Zhang B, Liu J, Wang C, Yang K, Lee C, Zhang H, He J. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser Photon Rev 2020;14:1900240.

[12]

Wang C, Chen Q, Chen H, Liu J, Song Y, Liu J, Li D, Ge Y, Gong Y, Zhang Y, Zhang H. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron. Adv. 2021;4:200032.

[13]

Liu W, Liu M, Chen X, Shen T, Lei M, Guo J, Deng H, Zhang W, Dai C, Zhang X, Wei Z. Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers. Commun Phys 2020;3:1-6.

[14]

Liu M, Wu H, Liu X, Wang Y, Lei M, Liu W, Guo W, Wei Z. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron. Adv. 2021;4. 200029-1.

[15]

Liu W, Xiong X, Liu M, Xing X, Chen H, Ye H, Han J, Wei Z. Bi4Br4-based saturable absorber with robustness at high power for ultrafast photonic device. Appl Phys Lett 2022;120:053108.

[16]

Wang G, Baker-Murray A, Blau W. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photon Rev 2019;13:1800282.

[17]

Jiang X, Gross S, Withford M, Zhang H, Yeom D, Rotermund F, Fuerbach A. Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers. Opt Mater Express 2018;8:3055-71.

[18]

Guo B. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin Opt Lett 2018;16:020004.

[19]

Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z, Loh K, Tang D. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 2009;19:3077-83.

[20]

Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D, Ferrari A. Graphene mode-locked ultrafast laser. ACS Nano 2010;4:803-10.

[21]

Liu M, Tang R, Luo A, Xu W, Luo Z. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers. Photon Res 2018;6:C1-7.

[22]

Chernysheva M, Rozhin A, Fedotov Y, Mou C, Arif R, Kobtsev S, Dianov E, Turitsyn S. Carbon nanotubes for ultrafast fibre lasers. Nanophotonics 2017;6: 1-30.

[23]

Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y, Wang F. Versatile multiwavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci Rep 2013;3:1-6.

[24]

Li L, Pang L, Wang R, Zhang X, Hui Z, Han D, Zhao F, Liu W. Ternary transition metal dichalcogenides for high power vector dissipative soliton ultrafast fiber laser. Laser Photon Rev 2022;16:2100255.

[25]

Liu X, Gao Q, Zheng Y, Mao D, Zhao J. Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics 2020;9:2215-31.

[26]

Chen H, Yin J, Yang J, Zhang X, Liu M, Jiang Z, Wang J, Sun Z, Guo T, Liu W, Yan P. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt Lett 2017;42:4279-82.

[27]

Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv Opt Mater 2019;7:1800224.

[28]

Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt Lett 2015;40:3885-8.

[29]

Sobon G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators. Photon Res 2015;3:A56-63.

[30]

Mak K, Sfeir M, Wu Y, Liu C, Misewich J, Heinz T. Measurement of the optical conductivity of graphene. Phys Rev Lett 2008;101:196405.

[31]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 2011;6:147-50.

[32]

Xu Y, Wang Z, Guo Z, Huang H, Xiao Q, Zhang H, Yu X. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater 2016;4:1223-9.

[33]

Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H, Zhang F, Ge Y, Zhang H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt Express 2018;26:22750-60.

[34]

Koroteev Y, Bihlmayer G, Gayone J, Chulkov E, Blügel S, Echenique P, Hofmann P. Strong spin-orbit splitting on Bi surfaces. Phys Rev Lett 2004;93: 046403.

[35]

Hoffman C, Meyer J, Bartoli F, Venere AD, Yi X, Hou C, Wang H, Ketterson J, Wong G. Semimetal-to-semiconductor transition in bismuth thin films. Phys Rev B 1993;48:11431.

[36]

Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv Mater 2017;29:1605299.

[37]

Lu L, Wang W, Wu L, Jiang X, Xiang Y, Li J, Fan D, Zhang H. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics 2017;4:2852-61.

[38]

Su X, Wang Y, Zhang B, Zhang H, Yang K, Wang R, He J. Bismuth quantum dots as an optical saturable absorber for a 1.3 μm Q-switched solid-state laser. Appl Opt 2019;58:1621-5.

[39]

Dong L, Huang W, Chu H, Li Y, Wang Y, Zhao S, Li G, Zhang H, Li D. Passively Qswitched near infrared lasers with bismuthene quantum dots as the saturable absorber. Opt Laser Technol 2020;128:106219.

[40]

Pan H, Huang W, Chu H, Li Y, Zhao S, Li G, Zhang H, Li D. Bismuthene quantum dots based optical modulator for MIR lasers at 2 μm. Opt Mater 2020;102: 109830.

[41]

Son J, Park K, Han M, Kang C, Park S, Kim J, Kim W, Kim S, Hyeon T. Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. Angew Chem, Int Ed 2011;50: 1363-6.

[42]

Lei P, An R, Zhang P, Yao S, Song S, Dong L, Xu X, Du K, Feng J, Zhang H. Ultrafast synthesis of ultrasmall poly(vinylpyrrolidone)-protected bismuth nanodots as a multifunctional theranostic agent for in vivo dual-modal CT/photothermal-imaging-guided photothermal therapy. Adv Funct Mater 2017;27:1702018.

[43]

Huang W, Zhu J, Wang M, Tang Y, Shu Y, Xie Z, Zhang H. Emerging monoelemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv Funct Mater 2021;31:2007584.

[44]

Cabasse A, Martel G, Oudar J. High power dissipative soliton in an erbiumdoped fiber laser mode-locked with a high modulation depth saturable absorber mirror. Opt Express 2009;17:9537-42.

[45]

Zhu T, Wang Z, Wang DN, Yang F, Li L. Observation of controllable tightly and loosely bound solitons with an all-fiber saturable absorber. Photon Res 2019;7:61-8.

[46]
Malomed B. Bound solitons in the nonlinear schrödinger/ginzburg-landau equation//large scale structures in nonlinear physics. Berlin, Heidelberg, German: Springer; 1991. p. 288-94.
[47]

Ma M, Zhang J, Zhang Y, Wang X, Wang J, Yu P, Liu Z, Wei Z. Ternary chalcogenide Ta2NiS5 nanosheets for broadband pulse generation in ultrafast fiber lasers. Nanophotonics 2019;9:2341-9.

[48]

Zhao Y, Wang W, Li X, Lu H, Shi Z, Wang Y, Zhang C, Hu J, Shan G. Functional porous MOF-Derived CuO octahedra for harmonic soliton molecule pulses generation. ACS Photonics 2020;7:2440-7.

[49]

Gao L, Ma C, Wei S, Kuklin A, Zhang H, Ågren H. Applications of few-layer Nb2C MXene: narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 2021;15:954-65.

Journal of Materiomics
Pages 183-190
Cite this article:
Pan H, Chu H, Li Y, et al. Bismuthene quantum dots integrated D-shaped fiber as saturable absorber for multi-type soliton fiber lasers. Journal of Materiomics, 2023, 9(1): 183-190. https://doi.org/10.1016/j.jmat.2022.08.002

354

Views

18

Crossref

19

Web of Science

25

Scopus

Altmetrics

Received: 22 June 2022
Revised: 03 August 2022
Accepted: 04 August 2022
Published: 31 August 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return