AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Tunable natural resonances via synergistic effects of two phases in Fex(CoyNi1-y)100-x for multi-band microwave absorption

Renchao Hua,bDesheng Pana,bXinwei Xua,bBin Xiaoa,bHong Wanga,b( )
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

Multi-band microwave absorption is becoming ubiquitous owing to the increasingly complex electromagnetic environment driven by the diversity of electronic devices. However, research on efficient electromagnetic absorbers applicable in both centimeter-wave and millimeter-wave bands to address the electromagnetic interference in 5G networks is highly challenging. In this study, Fex(CoyNi1-x)100-x particles with two phases (face-centered cubic (FCC) and hexagonal close-packed (HCP)) were synthesized and were found to exhibit excellent electromagnetic wave absorption. HCP phase with high magnetocrystalline anisotropy was introduced into FCC phase Fex(CoyNi1-x)100-x, resulting in natural resonances in multi-band frequency. Prominent microwave absorption properties in ultra-wide bandwidth ranging from 6.9 to 39.5 GHz were obtained. The maximum reflection loss (RL) of the Fe23(Co0.5Ni0.5)77 composite film reached −50 dB. Such a remarkable absorption performance is attributed to the synergetic effects of the multiple natural resonances generated by the coexistence of HCP and FCC phases in Fe23(Co0.5Ni0.5)77. Overall, this work is promising for the future design of high-performance microwave absorbing materials in a wide bandwidth.

References

[1]

Ma M, Zheng Q, Zhu Y, Li L, Cao M. J Materiomics 2022;8:577-85.

[2]

Yao B, Hong W, Chen T, Han Z, Xu XW, Hu R, et al. Adv Mater 2020;14:1907499.

[3]

Han Y, Yuan J, Zhu Y, Wang Q. J Colloid Interface Sci 2022;609:749-54.

[4]

Zhang M, Cao M, Shu J, Cao W. Mater Sci Eng R 2021;145:100627.

[5]

Wu Z, Cheng H, Chen C, Yang B, Xu C, Che R, et al. Adv Mater 2022;34:2107538.

[6]

Chen F, Zhang S, Guo R, Ma B, Xiong Y, Luo H, Cheng YZ, et al. Compos B 2021;224:109161.

[7]

Li Y, Liu X, Nie X, Yang W, Wang Y, Yu R, Shui J. Adv Funct Mater 2019;29:1901448.

[8]

Guo R, Su D, Chen F, Cheng Y, Wang X, Gong R, et al. ACS Appl Mater Interfaces 2022;14:3084-94.

[9]

Sun G, Dong B, Cao M, Wei B, Hu C. Chem Mater 2011;23:1587-93.

[10]

Wang Z, Zhao GL. J Mater Chem C 2014;2:9406-11.

[11]

Shi XL, Cao MS, Yuan J, Fang XY. Appl Phys Lett 2009;95:163108.

[12]

Pan J, Zhang R, Ling J, Wang M, Zhu H, et al. J Materiomics 2021;7:957-66.

[13]

Ning MQ, Lei ZK, Tan GG, Man QK. ACS Appl Mater Interfaces 2021;13:47061-71.

[14]

Wang H, Dai YY, Geng DY, Ma S, Li D, An J, et al. Nanoscale 2015;7:17312-9.

[15]

Pan D, Xiao B, Wang Q, Wang H. Chem Commun 2021;57:2309-12.

[16]

Zhao S, Wang C, Zhong B. J Magn Magn Mater 2020;495:165753.

[17]

Jiu J, Cao M, Luo Q, Shi H, Wang WZ. ACS Appl Mater Interfaces 2016;34:22615-22.

[18]

Li H, Cao Z, Lin J, Zhao H, Jiang Q, Jiang Z, Liao H, et al. Nanoscale 2018;10:1930-8.

[19]

Wen F, Yi H, Qiao L, Zheng H, Zhou D, Li F. Appl Phys Lett 2008;92:223105.

[20]

Shukla V. Nanoscale Adv 2019;1:1640-71.

[21]

Kim T, Lee J, Lee K, Park B, Jung BM, Lee SB. Chem Eng J 2019;361:1182-9.

[22]

Gupta S, Qiao L, Zhao S, Xu H, Lin Y, Devaguptapu SV, Wang X, et al. Adv Energy Mater 2016;6:1601198.

[23]

Kong LB, Li ZW, Liu L, Huang R, Abshinova M, Yang ZH, Tang CB, et al. Int Mater Rev 2013;58:203-59.

[24]

Zhou W, Guo L. Chem Soc Rev 2015;44:6697-707.

[25]

Li X, Takahashi S. J Magn Magn Mater 2000;214:195-203.

[26]

Mercier D, Levy JC, Viau G. Phys Rev B 2000;62:532-44.

[27]

Yan SJ, Zhen L, Xu CY, Jiang JT, Shao WZ, Lu L, Tang J. J Appl Phys 2011;109:07A320.

[28]

Zhang J, Franz C, Czerner M, Heiliger C. Phys Rev B 2014;90:184409.

[29]

Shen G, Fang X, Wu H, Wei H, Li J, Li K, et al. Appl Phys A 2017;123:291.

[30]

Toneguzzo P, Viau G, Acher O. J Mater Sci 2000;35:3767-84.

[31]

He N, He Z, Liu L, Lu Y, Wang F, Wu W, Tong G. Chem Eng J 2020;381:122743.

[32]

Lin J, Liang H, Jia H, Chen S, Guo J, Qi J, Qu C, et al. J Mater Chem 2017;5:24594-601.

[33]

Yan SJ, Zhen L, Xu CY, Jiang JT, Shao WZ. J Phys D Appl Phys 2010;43:245003.

[34]

Gomez-Polo C, Marín P, Pascual L, Hernando A, Vázquez M. Phys Rev B 2001;65:024433.

[35]

Xu Z, Du Y, Liu D, Wang Y, Ma W, Wang Y, Xu P, et al. ACS Appl Mater Interfaces 2019;11:4268-77.

[36]

Lv R, Kang F, Gu J, Gui X, Wei J, Wang K, Wu D. Appl Phys Lett 2008;93:223105.

[37]

Wang L, Li X, Li Q, Zhao Y, Che R. ACS Appl Mater Interfaces 2018;10:22602-10.

[38]

Green M, Chen X. J. Materiomics 2019;5:503-41.

[39]

Sun J, Chen J, Ge H, Sun H, Yang Y, Zhang Y. Compos A 2022;156:106850.

[40]

Aharoni A. J Appl Phys 1991;69:7762-74.

[41]

Deng L. J Appl Phys 2007;101:103916.

[42]

Voltatas PA, Fotiadis DI, Massalas CV. J Magn Magn Mater 2000:217.

[43]

Wen F, Yi H, Qiao L. Appl Phys Lett 2008;92:042507.

[44]

Wu N, Liu C, Xu D, Liu J, Liu W, Shao Q, Guo Z. ACS Sustainable Chem Eng 2018;6:12471-80.

[45]

Liu P, Gao S, Huang W, Ren J, Yu D, He W. Carbon 2020;159:83-93.

[46]

Wang Y, Gao X, Wu X, Zhang W, Luo C, Liu P. Chem Eng J 2019;375:121942.

[47]

Jia Z, Wang B, Feng A, Liu J, Zhang C, Zhang M, Wu G. Ceram Int 2019;45:15854-9.

[48]

Shu R, Wan Z, Zhang J, Wu Y, Liu Y, Shi J, Zheng M. ACS Appl Mater Interfaces 2020;12:4689-98.

[49]

Liu P, Gao S, Wang Y, Huang Y, Wang Y, Luo J. ACS Appl Mater Interfaces 2019;11:25624-35.

[50]

Ouyang J, He Z, Zhang Y, Yang H, Zhao Q. ACS Appl Mater Interfaces 2019;11:39304-14.

[51]

Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y, et al. Adv Mater 2016;28:486-90.

[52]

Qiao M, Lei X, Ma Y, Tian L, He X, Su K, Zhang Q. Nano Res 2018;11:1500-19.

[53]

Lv H, Zhang H, Ji G, Xu ZJ. ACS Appl Mater Interfaces 2016;8:6529-38.

[54]

Wu Z, Pei K, Xing L, Yu X, You W, Che R. Adv Funct Mater 2019;29:1901448.

[55]

Peng K, Fang G, Guo C, Liu C, Xu G, Xiao A, Zhang Y, et al. J Magn Magn Mater 2019;490:165488.

[56]

Zhou J, Shu X, Wang Z, Liu Y, Wang Y, Zhou C, Kong L. J Alloys Compd 2019;794:68-75.

[57]

Shi X, You W, Zhao Y, Li X, Shao Z, Che R. Nanoscale 2019;11(37):17270-6.

[58]

Shi X, Liu Z, You W, Zhao X, Che R. J Mater Chem C 2018;6:7790-6.

[59]

Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z, et al. Adv Mater 2015;27:2049-53.

[60]

Xiao B, Chen M, Hu R, Xu X, Deng X, Niu Y, Li X, Wang H. Adv Eng Mater 2019;21:1900981.

[61]

Liu C, Zhang Y, Tang Y, Wang Z, Ma N, Du P. J Mater Chem C 2017;5:3461-72.

[62]

Gong J, Yang F, Shao Q, He X, Zhang X, Liu S, Tang L, et al. RSC Adv 2017;7:41980-8.

Journal of Materiomics
Pages 90-98
Cite this article:
Hu R, Pan D, Xu X, et al. Tunable natural resonances via synergistic effects of two phases in Fex(CoyNi1-y)100-x for multi-band microwave absorption. Journal of Materiomics, 2023, 9(1): 90-98. https://doi.org/10.1016/j.jmat.2022.08.010

274

Views

9

Crossref

7

Web of Science

7

Scopus

Altmetrics

Received: 27 May 2022
Revised: 24 August 2022
Accepted: 31 August 2022
Published: 17 September 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return