Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Patterning of large area nanoscale domains in as-grown epitaxial ferroelectric PbTiO3 films

Luyong ZhangaGuo Tiana()Wenda YangaDongfeng ZhengaChuanjie LinaJianbiao XianaYihang GuoaXingchen ZhangaXiuqin QiuaLanping ZhangaZhen FanaDeyang ChenaZhipeng HouaMinghui QinaJun-Ming LiubXingsen Gaoa()
Guangdong Provincial Key Laboratory of Optical Information Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

Effective tuning of nanoscale domain structures provides fundamental basis for controlling and engineering of various functionalities in ferroelectric materials. In this work, we demonstrate the precise patterning of nanoscopic domain structures in as-grown epitaxial PbTiO3 (PTO) films by merely introducing an ultrathin pre-patterned doping layer (e.g., Fe-doped PTO). The doping layer can effectively reverse the interfacial built-in bias, consequent to a reversed initial polarization reorientation in the as-grown film, which makes it possible to transfer the nano-patterns in the doping layer into the domain structure of ferroelectric films. For instance, we have successfully fabricated large area ordered array of nanoscale cylindrical domains (downward polarization) embedded in the matrix domain with opposite polarization (upward polarization) in PTO film. These nanoscale cylinder domains also allow deterministic and reversible erasure and creation induced by biased tip scanning. The results provide an effective pathway for on-demand patterning of large area nanoscale domains in the as-grown films, which may find applications in a wide range of nanoelectronic devices.

References

[1]

Scott JF. Applications of modern ferroelectrics. Science 2007;315:954–9. https://doi.org/10.1126/science.1129564.

[2]

Martin LW, Rappe AM. Thin-film ferroelectric materials and their applications. Nat Rev Mater 2017;2:16087. https://doi.org/10.1038/natrevmats.2016.87.

[3]

Wada S, Yako K, Yokoo K, Kakemoto H, Tsurumi T. Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 2006;334:17–27. https://doi.org/10.1080/00150190600689647.

[4]

Wang B, Li F, Chen LQ. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals. Adv. Mater. 2021;33:2105071. https://doi.org/10.1002/adma.202105071.

[5]

Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin CJ, et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photon 2021;13:242–352. https://doi.org/10.1364/aop.411024.

[6]

Hu X, Zhang Y, Zhu S. Nonlinear beam shaping in domain engineered ferroelectric crystals. Adv. Mater. 2020;32:1903775. https://doi.org/10.1002/adma.201903775.

[7]

Zhang Y, Sheng Y, Zhu S, Xiao M, Krolikowski W. Nonlinear photonic crystals: from 2D to 3D. Optica 2021;8:372–81. https://doi.org/10.1364/optica.416619.

[8]

Yadav AK, Nelson CT, Hsu SL, Hong Z, Clarkson JD, Schleputz CM, et al. Observation of polar vortices in oxide superlattices. Nature 2016;530. https://doi.org/10.1038/nature16463. 198-20.

[9]

Das S, Tang YL, Hong Z, Goncalves MAP, McCarter MR, Klewe C, et al. Observation of room-temperature polar skyrmions. Nature 2019;568:368–72. https://doi.org/10.1038/s41586-019-1092-8.

[10]

Yadav AK, Nguyen KX, Hong ZJ, Garcia-Fernandez P, Aguado-Puente P, Nelson CT, et al. Spatially resolved steady-state negative capacitance. Nature 2019;565. https://doi.org/10.1038/s41586-018-0855-y. 468–47.

[11]

Yang W, Tian G, Zhang Y, Xue F, Zheng D, Zhang L, et al. Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects. Nat Commun 2021;12:1306. https://doi.org/10.1038/s41467-021-21521-9.

[12]

Balke N, Winchester B, Ren W, Chu YH, Morozovska AN, Eliseev EA, et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat Phys 2012;8:81–8. https://doi.org/10.1038/nphys2132.

[13]

Garrity K, Kolpak AM, Ismail-Beigi S, Altman EI. Chemistry of ferroelectric surfaces. Adv. Mater. 2010;22:2969–73. https://doi.org/10.1002/adma.200903723.

[14]

Li L, Salvador PA, Rohrer GS. Photocatalysts with internal electric fields. Nanoscale 2014;6:24–42. https://doi.org/10.1039/c3nr03998f.

[15]
YuanYXiaoZYangBHuangJArising applications of ferroelectric materials in photovoltaic devicesJ Mater Chem A2014260274110.1039/c3ta14188h

Yuan Y, Xiao Z, Yang B, Huang J. Arising applications of ferroelectric materials in photovoltaic devices. J Mater Chem A 2014;2:6027–41. https://doi.org/10.1039/c3ta14188h.

[16]

Blázquez-Castro A, García-Cabañes A, Carrascosa M. Biological applications of ferroelectric materials. Appl Phys Rev 2018;5:041101. https://doi.org/10.1063/1.5044472.

[17]
MuraltPFerroelectric thin films for micro-sensors and actuators: a reviewJ Micromech Microeng200021364610.1088/0960-1317/10/2/307

Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 2000;2:136–46. https://doi.org/10.1088/0960-1317/10/2/307

[18]

Chen J, Lu H, Liu H-J, Chu Y-H, Dunn S, Ostrikov K, et al. Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films. Appl Phys Lett 2013;102:182904. https://doi.org/10.1063/1.4802885.

[19]

Chirila CF, Stancu V, Boni GA, Pasuk I, Trupina L, Filip LD, et al. Controlling polarization direction in epitaxial Pb(Zr0.2Ti0.8)O3 films through Nb (n-type) and Fe (p-type) doping. Sci Rep 2022;12:9131. https://doi.org/10.1038/s41598-022-13921-8.

[20]

Li L, Jokisaari JR, Zhang Y, Cheng X, Yan X, Heikes C, et al. Control of domain structures in multiferroic thin films through defect engineering. Adv. Mater. 2018;30:e1802737. https://doi.org/10.1002/adma.201802737.

[21]

Jeon BC, Lee D, Lee MH, Yang SM, Chae SC, Song TK, et al. Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO3 thin films. Adv. Mater. 2013;25:5643–9. https://doi.org/10.1002/adma.201301601.

[22]

Erhart P, Eichel R-A, Träskelin P, Albe K, et al. Association of oxygen vacancies with impurity metal ions in lead titanate. Phys Rev B 2007;76:174116. https://doi.org/10.1103/PhysRevB.76.174116.

[23]

Meštrić H, Eichel RA, Kloss T, Dinse KP, Laubach So, Laubach St, et al. Iron-oxygen vacancy defect centers in PbTiO3: newman superposition model analysis and density functional calculations. Phys Rev B 2005;71:134109. https://doi.org/10.1103/PhysRevB.71.134109.

[24]

Erhart P, Träskelin P, Albe K. Formation and switching of defect dipoles in acceptor-doped lead titanate: a kinetic model based on first-principles calculations. Phys Rev B 2013;88:024107. https://doi.org/10.1103/PhysRevB.88.024107.

[25]

Pintilie L, Ghica C, Teodorescu CM, Pintilie I, Chirila C, Pasuk I, et al. Polarization induced self-doping in epitaxial Pb(Zr0.20Ti0.8)O3 thin films. Sci Rep 2015;5:14974. https://doi.org/10.1038/srep14974.

[26]

Tanase LC, Abramiuc LE, Popescu DG, Trandafir A-M, Apostol NG, Bucur IC, et al. Polarization orientation in lead zirconate titanate (001) thin films driven by the interface with the substrate. Phys Rev Appl 2018;10:034020. https://doi.org/10.1103/PhysRevApplied.10.034020.

[27]
DixitAVRajopadhyeNRBhoraskarSVSecondary electron emission of doped PZT ceramicsJ Mater Sci198621279880210.1007/BF00551492

Dixit AV, Rajopadhye NR, Bhoraskar SV. Secondary electron emission of doped PZT ceramics. J Mater Sci 1986;21:2798–802. https://doi.org/10.1007/BF00551492.

[28]

Hartmann AJ, Neilson M, Lamb RN, Watanabe K, Scott JF. Ruthenium oxide and strontium ruthenate electrodes for ferroelectric thin-films capacitors. Appl Phys A 2000;70:239–42. https://doi.org/10.1007/s003390050041.

[29]

Highland MJ, Fister TT, Fong DD, Fuoss PH, Thompson Carol, Eastman JA, et al. Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. Phys Rev Lett 2011;107:187602. https://doi.org/10.1103/PhysRevLett.107.187602.

[30]

Tian Y, Wei L, Zhang Q, Huang H, Zhang Y, Zhou H, et al. Water printing of ferroelectric polarization. Nat Commun 2018;9:3809. https://doi.org/10.1038/s41467-018-06369-w.

[31]

Ishizuki H, Taira T. Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3. Opt Express 2012;20:20002–10. https://doi.org/10.1364/oe.20.020002.

[32]

Rosenman G, Garb K, Skliar A, Oron M, Eger D, Katz M. Domain broadening in quasi-phase-matched nonlinear optical devices. Appl Phys Lett 1998;73:865–7. https://doi.org/10.1063/1.121969.

[33]

Feng D, Ming NB, Hong JF, Yang YS, Zhu JS, Yang Z, Wang YN. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl Phys Lett 1980;37:607–9. https://doi.org/10.1063/1.92035.

[34]

Wada S, Yako K, Yokoo K, Kakemoto H, Tsurumi T. Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics 2006;334:17–27. https://doi.org/10.1080/00150190600689647.

Journal of Materiomics
Pages 56-61
Cite this article:
Zhang L, Tian G, Yang W, et al. Patterning of large area nanoscale domains in as-grown epitaxial ferroelectric PbTiO3 films. Journal of Materiomics, 2023, 9(1): 56-61. https://doi.org/10.1016/j.jmat.2022.08.011
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return