AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Extraordinary piezoelectric effect induced in two-dimensional rare earth monochalcogenides via reducing system dimensionality

Neveen I. AtallahaMaged El-Kemarya( )Fabien PascalebKhaled E. El-Kelanya( )
Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516, Kafr el-skiekh, Egypt
Université de Lorraine - Nancy, CNRS, Laboratoire de Physique et Chimie Théoriques, UMR 7019, Vandoeuvre-les-Nancy, France

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

Piezoelectricity is pivotal for applications in micro/nanoelectromechanical systems (MEMS/NEMS). Inducing such a property in 2D systems via the reduction of the dimensionality of their corresponding 3D bulk is here explored. Based on DFT theory and Gaussian-type-localized basis sets, the structural, electronic, mechanical, and piezoelectric properties of both 3D and 2D rare earth monochalcogenides RmX (Rm = Tm, Yb, Lu, and X = S, Se, Te) are investigated using the CRYSTAL code. Most intriguingly, the 2D LuX compounds display a buckled structure, where the Lu and X atoms protrude from the monolayer surface leading to an additional out-of-plane piezoelectric effect; (e31 = 2104.84, 1770.28, 1689.79 pC/m, and d31 = 56.37, 49.76, and 147.90 pm/V for LuS, LuSe, and LuTe, respectively). Such piezoelectric response is two orders of magnitude larger than the one of recently reported 2D ferroelectric MXenes, and is nearly thirty times larger than the commonly used AlN and GaN bulk structures. Furthermore, the reduced elastic constants obtained, when compared to other 2D materials, confirm the flexibility and softness of the considered 2D systems.

References

[1]

Nutting D, Felix JF, Tillotson E, Shin D-W, De Sanctis A, Chang H, Cole N, Russo S, Woodgate A, Leontis I, et al. Heterostructures formed through abraded van der waals materials. Nat Commun 2020;11(1):1–10.

[2]

Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, et al. Stable mid-infrared polarization imaging based on quasi-2d tellurium at room temperature. Nat Commun 2020;11(1):1–10.

[3]

Lin X, Yang W, Wang KL, Zhao W. Two-dimensional spintronics for low-power electronics. Nature Electronics 2019;2(7):274–83.

[4]
Zhang Q, Zuo S, Chen P, Pan C. Piezotronics in two-dimensional materials. Info 2021;3(9):987–1007. arXiv: https://onlinelibrary.wiley.com/doi/pdf/10.1002/inf2.12220, doi:https://doi.org/10.1002/inf2.12220. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/inf2.12220.
[5]

Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015;9(12):11509–39.

[6]

Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gómez-Herrero J, Ares P, Zamora F, Zhu Z, Zeng H. Recent progress in 2d group-va semiconductors: from theory to experiment. Chem Soc Rev 2018;47(3):982–1021.

[7]

Novoselov KS, Geim AK, Morozov SV, Jiang DE, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306(5696):666–9.

[8]

Jin C, Lin F, Suenaga K, Iijima S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 2009;102(19):195505.

[9]

Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem 2011;123(47):11289–93.

[10]

Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012;7(11):699–712.

[11]

Al Balushi ZY, Wang K, Ghosh RK, Vilá RA, Eichfeld SM, Caldwell JD, et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater 2016;15(11):1166–71.

[12]

Chen Y, Liu J, Zeng M, Lu F, Lv T, Chang Y, et al. Universal growth of ultra-thin Ⅲ-Ⅴ semiconductor single crystals. Nat Commun 2020;11(1):1–7.

[13]
ChenYLiuKLiuJLvTWeiBZhangTGrowth of 2d gan single crystals on liquid metalsJ Am Chem Soc20181404816392510.1021/jacs.8b08351

Chen Y, Liu K, Liu J, Lv T, Wei B, Zhang T, et al. Growth of 2d gan single crystals on liquid metals. J Am Chem Soc 2018;140(48):16392–5.

[14]

Zheng C, Yu L, Zhu L, Collins JL, Kim D, Lou Y, et al. Room temperature in-plane ferroelectricity in van der waals In2Se3. Sci Adv 2018;4(7):eaar7720.

[15]

Bandurin D, Tyurnina A, Yu G, Mishchenko A, Zólyomi V, Morozov S, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol 2016;12(3):223–7.

[16]

Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, Chai Y, Wang Z, Jin C, Dai J, et al. Phase identification and strong second harmonic generation in pure ϵ-inse and its alloys. Nano Lett 2019;19(4):2634–40.

[17]
ZhouXGanLZhangQXiongXLiHZhongZHigh performance near-infrared photodetectors based on ultrathin sns nanobelts grown via physical vapor depositionJ Mater Chem C20164112111610.1039/C5TC04410C

Zhou X, Gan L, Zhang Q, Xiong X, Li H, Zhong Z, et al. High performance near-infrared photodetectors based on ultrathin sns nanobelts grown via physical vapor deposition. J Mater Chem C 2016;4(11):2111–6.

[18]
Xu L, Yang M, Wang SJ, Feng YP. Electronic and optical properties of the monolayer group-Ⅳ monochalcogenides MX (M = Ge, Sn; X = S, Se, Te). Phys Rev B 2017;95:235434. https://doi.org/10.1103/PhysRevB.95.235434. URL, https://link.aps.org/doi/10.1103/PhysRevB.95.235434.
[19]

Chang K, Kaloni TP, Lin H, Bedoya-Pinto A, Pandeya AK, Kostanovskiy I, et al. 2d ferroelectrics: enhanced spontaneous polarization in ultrathin snte films with layered antipolar structure. Adv Mater 2019;31(3):1970016.

[20]

Khan H, Mahmood N, Zavabeti A, Elbourne A, Rahman M, Zhang BY, Krishnamurthi V, Atkin P, Ghasemian MB, Yang J, et al. Liquid metal-based synthesis of high performance monolayer sns piezoelectric nanogenerators. Nat Commun 2020;11(1):1–8.

[21]
ZhangMZhengWLiuYHuangPGongZWeiJA new class of blue-LED-excitable NIR-Ⅱ luminescent nanoprobes based on lanthanide-doped cas nanoparticlesAngew Chem Int Ed2019582895566010.1002/anie.201905040

Zhang M, Zheng W, Liu Y, Huang P, Gong Z, Wei J, et al. A new class of blue-LED-excitable NIR-Ⅱ luminescent nanoprobes based on lanthanide-doped cas nanoparticles. Angew Chem Int Ed 2019;58(28):9556–60.

[22]
LuoPHuangPWangJYaoCZhaoYZhouBControllable synthesis of glass ceramics containing YF3: Eu3+ nanocrystals: well-preserved eu and prolonged lifetimeJ Am Ceram Soc2020103530899610.1111/jace.17021

Luo P, Huang P, Wang J, Yao C, Zhao Y, Zhou B, et al. Controllable synthesis of glass ceramics containing YF3: Eu3+ nanocrystals: well-preserved eu and prolonged lifetime. J Am Ceram Soc 2020;103(5):3089–96.

[23]

Skripka A, Karabanovas V, Jarockyte G, Marin R, Tam V, Cerruti M, Rotomskis R, Vetrone F. Decoupling theranostics with rare earth doped nanoparticles. Adv Funct Mater 2019;29(12):1807105.

[24]

Strange P, Svane A, Temmerman W, Szotek Z, Winter H. Understanding the valency of rare earths from first-principles theory. Nature 1999;399(6738):756–8.

[25]

Chen P, Han W, Zhao M, Su J, Li Z, Li D, Pi L, Zhou X, Zhai T. Recent advances in 2d rare earth materials. Adv Funct Mater 2021;31(13):2008790.

[26]

Rooymans C. High pressure phase transition of europium telluride. Solid State Commun 1965;3(12):421–4.

[27]
ReidFMatsonLMillerJHimesRElectrical conduction in rare-earth monoselenides and monotellurides and their alloysJ Phys Chem Solid19642599697610.1016/0022-3697(64)90034-4

Reid F, Matson L, Miller J, Himes R. Electrical conduction in rare-earth monoselenides and monotellurides and their alloys. J Phys Chem Solid 1964;25(9):969–76.

[28]

Bucher E, Andres K, Salvo FJ di, Maita JP, Gossard AC, Cooper AS, et al. Magnetic and some thermal properties of chalcogenides of Pr and Tm and a few other rare earths. Phys Rev B 1975;11(500):14.

[29]
DuanCGSabirianovRFMeiWNDowbenPAJaswalSTsymbalEYElectronic, magnetic and transport properties of rare-earth monopnictidesJ Phys Condens Matter2007193131522010.1088/0953-8984/19/31/315220

Duan CG, Sabirianov RF, Mei WN, Dowben PA, Jaswal S, Tsymbal EY. Electronic, magnetic and transport properties of rare-earth monopnictides. J Phys Condens Matter 2007;19(31):315220.

[30]

Petukhov A, Lambrecht W, Segall B. Electronic structure of rare-earth pnictides. Phys Rev B 1996;53(8):4324.

[31]

Larson P, Lambrecht WR, Chantis A, van Schilfgaarde M. Electronic structure of rare-earth nitrides using the LSDA+U approach: importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys Rev B 2007;75(4):045114.

[32]
Antonov V, Shpak A, Yaresko A. Electronic structure of mixed valent systems. Condensed Matter Physics; 2004.
[33]

Phillips J. Dielectric definition of electronegativity. Phys Rev Lett 1968;20(11):550.

[34]

Penn DR. Wave-number-dependent dielectric function of semiconductors. Phys Rev 1962;128(5):2093.

[35]
VermaABhardwajSCorrelation between ionic charge and ground-state properties in rocksalt and zinc blende structured solidsJ Phys Condens Matter20061837860310.1088/0953-8984/18/37/018

Verma A, Bhardwaj S. Correlation between ionic charge and ground-state properties in rocksalt and zinc blende structured solids. J Phys Condens Matter 2006;18(37):8603.

[36]
HorneMStrangePTemmermanWSzotekZSvaneAWinterHThe electronic structure of europium chalcogenides and pnictidesJ Phys Condens Matter20041628506110.1088/0953-8984/16/28/024

Horne M, Strange P, Temmerman W, Szotek Z, Svane A, Winter H. The electronic structure of europium chalcogenides and pnictides. J Phys Condens Matter 2004;16(28):5061.

[37]

Singh S, Singh R, Gour A. Phase transition in CeSe, EuSe and LaSe under high pressure. Open Phys 2007;5(4):576–85.

[38]

Ariponnammal S, Rathika S. Study of charge transfer and structure factor calculation in Ybs. Chalcogenide Lett 2011;8(2):139–46.

[39]

Lan Q, Chen C. Two-dimensional ferroelasticity and negative Poisson’s ratios in monolayer YbX (X= S, Se, Te). Phys Chem Chem Phys 2022;24:2203–8. https://doi.org/10.1039/D1CP05080J.

[40]
DuerlooK-ANOngMTReedEJIntrinsic piezoelectricity in two-dimensional materialsJ Phys Chem Lett20123192871610.1021/jz3012436

Duerloo K-AN, Ong MT, Reed EJ. Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett 2012;3(19):2871–6.

[41]

Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014;514(7523):470–4.

[42]

Zhang C, Chen W, Zhang C. Two-dimensional theory of piezoelectric plates considering surface effect. Eur J Mech Solid 2013;41:50–7.

[43]

Zhuang HL, Johannes MD, Blonsky MN, Hennig RG. Computational prediction and characterization of single-layer CrS2. Appl Phys Lett 2014;104(2):022116.

[44]
BondWPhysical properties of crystals: their representation by tensors and matricesJ Phys Chem Solid195733–4338

Bond W. Physical properties of crystals: their representation by tensors and matrices. J Phys Chem Solid 1957;3(3–4):338.

[45]

Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA 2005;102(30):10451–3.

[46]

Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong ZJ, et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol 2015;10(2):151–5.

[47]

Mele E, Král P. Electric polarization of heteropolar nanotubes as a geometric phase. Phys Rev Lett 2002;88(5):056803.

[48]

Sai N, Mele E. Microscopic theory for nanotube piezoelectricity. Phys Rev B 2003;68(24):241405.

[49]

Ong MT, Reed EJ. Engineered piezoelectricity in graphene. ACS Nano 2012;6(2):1387–94.

[50]

Blonsky MN, Zhuang HL, Singh AK, Hennig RG. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 2015;9(10):9885–91.

[51]
HuangLHuoNLiYChenHYangJWeiZElectric-field tunable band offsets in black phosphorus and MoS2 van der waals pn heterostructureJ Phys Chem Lett20156132483810.1021/acs.jpclett.5b00976

Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der waals pn heterostructure. J Phys Chem Lett 2015;6(13):2483–8.

[52]

Fei R, Li W, Li J, Yang L. Giant piezoelectricity of monolayer group Ⅳ monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett 2015;107(17):173104.

[53]

Shi J, Gao Y, Wang X-L, Yun S-N. Electronic, elastic and piezoelectric properties of two-dimensional group-Ⅳ buckled monolayers. Chin Phys Lett 2017;34(8):087701.

[54]
Dai Y, Zhang X, Cui Y, Li M, Luo Y, Jiang F, et al. Theoretical insights into strong intrinsic piezoelectricity of blue-phosphorus-like group-Ⅳ monochalcogenides. Nano Res 2022;15(1):209–16. https://doi.org/10.1007/s12274-021-3460-6. URL https://doi.org/10.1007/s12274-021-3460-6.
[55]
Dovesi R, Saunders V, Roetti C, Orlando R, Zicovich-Wilson C, Pascale F, et al. Crystal17 user’s manual. Torino: univ; 2017.
[56]
Koch W, Holthausen M. A chemist’s guide to density functional theory. WileyVCH; 2000.
[57]

Pisani C, Capecchi G, Casassa S, Maschio L. Computational aspects of a localMP2 treatment of electron correlation in periodic systems: SiC vs BeS. Mol Phys 2005;103(18):2527–36.

[58]
BeckeADA new mixing of Hartree–Fock and local density-functional theoriesJ Chem Phys199398213727

Becke AD. A new mixing of Hartreee–Fock and local density-functional theories. J Chem Phys 1993;98(2):1372–7.

10.1063/1.464304
[59]
El-Kelany KE, Ravoux C, Desmarais JK, Cortona P, Pan Y, Tse JS, Erba A. Spin localization, magnetic ordering, and electronic properties of strongly correlated Ln2O3 sesquioxides (Ln¼La, Ce, Pr, Nd). Phys Rev B 2018;97:245118. https://doi.org/10.1103/PhysRevB.97.245118. URL https://link.aps.org/doi/10.1103/PhysRevB.97.245118.
[60]
Heyd J, Peralta JE, Scuseria GE, Martin RL. Energy band gaps and lattice parameters evaluated with the heyd-scuseria-ernzerhof screened hybrid functional. J Chem Phys 2005;123(17):174101. arXiv: 10.1063/1.2085170, doi: 10.1063/1.2085170. URL https://doi.org/10.1063/1.2085170.
[61]
Pernot P, Civalleri B, Presti D, Savin A. Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry. J Phys Chem 2015;119(21):5288–304. pMID: 25626469. arXiv: 10.1021/jp509980w doi:10.1021/jp509980w. URL https://doi.org/10.1021/jp509980w.
[62]

Doll K, Saunders V, Harrison N. Analytical Hartree–Fock gradients for periodic systems. Int J Quant Chem 2001;82(1):1–13.

[63]

Civalleri B, D'Arco P, Orlando R, Saunders V, Dovesi R. HartreeeFock geometry optimisation of periodic systems with the crystal code. Chem Phys Lett 2001;348(1–2):131–8.

[64]

Broyden CG. The convergence of a class of double-rank minimization algorithms 1. general considerations. IMA J Appl Math 1970;6(1):76–90.

[65]

Shanno DF. Conditioning of quasi-Newton methods for function minimization. Math Comput 1970;24(111):647–56.

[66]
GoldfarbDA family of variable-metric methods derived by variational meansMath Comput19702410923610.1090/S0025-5718-1970-0258249-6

Goldfarb D. A family of variable-metric methods derived by variational means. Math Comput 1970;24(109):23–6.

[67]

Jayaraman A, Singh A, Chatterjee A, Devi SU. Pressure-volume relationship and pressure-induced electronic and structural transformations in Eu and Yb monochalcogenides. Phys Rev B 1974;9(6):2513.

[68]
Lide DR. CRC handbook of chemistry and physics, vol. 85. CRC press; 2004.
[69]

Temmerman W, Svane A, Petit L, Lüders M, Strange P, Szotek Z. Pressure induced valence transitions in f-electron systems. Phase Transitions 2007;80(4–5):415–43.

[70]

Fragassa C, Pavlovic A. Compacted and spheroidal graphite irons: experimental evaluation of Poisson's ratio. FME Transactions 2016;44:327–32. https://doi.org/10.5937/fmet1604327F.

[71]
El-Kelany KE, Carbonnière P, Erba A, Rérat M. Inducing a finite in-plane piezoelectricity in graphene with low concentration of inversion symmetry-breaking defects. J Phys Chem C 2015;119(16):8966–73. arXiv: 10.1021/acs.jpcc.5b01471, doi:10.1021/acs.jpcc.5b01471. URL https://doi.org/10.1021/acs.jpcc.5b01471.
[72]

Erba A, Mahmoud A, Orlando R, Dovesi R. Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys Chem Miner 2014;41(2):151–60.

[73]

Peng Q, Ji W, De S. Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput Mater Sci 2012;56:11–7.

[74]

Mouhat F, Coudert FX. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 2014;90(22):224104.

[75]
Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong ZJ, et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol 2015;10(2):151–5. https://doi.org/10.1038/nnano.2014.309. URL https://doi.org/10.1038/nnano.2014.309.
[76]
Noor-A-Alam M, Kim HJ, Shin Y-H. Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine. Phys Chem Chem Phys 2014;16:6575–82. https://doi.org/10.1039/C3CP53971G. URL https://doi.org/10.1039/C3CP53971G.
[77]
Tan J, Wang Y, Wang Z, He X, Liu Y, Wang B, Katsnelson MI, Yuan S. Large out-of-plane piezoelectricity of oxygen functionalized mxenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy 2019;65:104058. https://doi.org/10.1016/j.nanoen.2019.104058. URL, https://www.sciencedirect.com/science/article/pii/S2211285519307657.
[78]
Zhang L, Tang C, Zhang C, Du A. First-principles screening of novel ferroelectric mxene phases with a large piezoelectric response and unusual auxeticity. Nanoscale 2020;12:21291–8. https://doi.org/10.1039/D0NR06609E. URL https://doi.org/10.1039/D0NR06609E.
[79]

Bechmann R. Elastic and piezoelectric constants of alpha-quartz. Phys Rev 1958;110(5):1060.

[80]
Guy IL, Muensit S, Goldys EM. Extensional piezoelectric coefficients of gallium nitride and aluminum nitride. Appl Phys Lett 1999;75(26):4133–5. arXiv: 10.1063/1.125560 doi:10.1063/1.125560. URL https://doi.org/10.1063/1.125560.
Journal of Materiomics
Pages 72-81
Cite this article:
Atallah NI, El-Kemary M, Pascale F, et al. Extraordinary piezoelectric effect induced in two-dimensional rare earth monochalcogenides via reducing system dimensionality. Journal of Materiomics, 2023, 9(1): 72-81. https://doi.org/10.1016/j.jmat.2022.09.002

274

Views

6

Crossref

5

Web of Science

6

Scopus

Altmetrics

Received: 05 June 2022
Revised: 27 August 2022
Accepted: 08 September 2022
Published: 02 October 2022
© 2022 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return