AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Few-layer Ti3CN MXene for ultrafast photonics applications in visible band

Zixin Yanga,cQi Yanga( )Yulin TianaXianghe RenaChun LiaYuqian ZuaSyed Zaheer Ud DinaLingfeng Gaob( )Jian WucHualong ChendHan Zhangd( )Jie LiueJingliang HefAbdullah G. Al-Sehemig,h
International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Edu-cation,Hangzhou Normal University, Hangzhou, 311121, China
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Abstract

Ti3CN, as a typical hetero-MXene, has attracted tremendous attention for its unique properties. However, its ultrafast photonics applications are still rare. Here, the few-layer Ti3CN MXene was successfully prepared by selective etching and molecular delamination technique. The nonlinear optical response of few-layer Ti3CN MXene at 640 nm was studied using the open-aperture Z-scan technique. The as-prepared Ti3CN MXene sample exhibited excellent nonlinear saturable absorption characteristics, resulting in the nonlinear absorption coefficient β of −4.05 × 10-2 cm/GW, which was one order of magnitude larger than that of black phosphorus (BP) and molybdenum disulfide (MoS2). For the optical modulation applications of few-layer Ti3CN MXene, passively Q-switched (PQS) solid-state visible lasers based on Ti3CN saturable absorber (SA) at 522 nm, 607 nm, 639 nm, and 721 nm were successfully realized. Furthermore, a Ti3CN-based stable passively mode-locked Pr:YLF red laser was also successfully achieved with a pulse duration of 30 ps, and the corresponding repetition rate was 73.1 MHz. The optical modulation device based on few-layer Ti3CN MXene shows good performance. Our work demonstrates that the tremendous prospects of the few-layer Ti3CN MXene as a visible optical modulation device in ultrafast photonics applications.

References

[1]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004;306:666–9.

[2]

Dhanabalan SC, Dhanabalan B, Ponraj JS, Bao Q, Zhang H. 2D-Materials-Based quantum dots: gateway towards next-generation optical devices. Adv Opt Mater 2017;5:1700257.

[3]

Liu WJ, Liu ML, Chen X, Shen T, Lei M, Guo JG, Deng HX, Zhang W, Dai CQ, Zhang XF, Wei ZY. Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers. Commun Phys 2020;3:15.

[4]

Xie C, Mak CH, Tao XM, Yan F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater 2017;27:1603886.

[5]

Li L, Pang LH, Wang RF, Zhang XG, Hui ZQ, Han DD, Zhao F, Liu WJ. Ternary transition metal dichalcogenides for high power vector dissipative soliton ultrafast fiber laser. Laser Photon Rev 2022;16:2100255.

[6]

Liu ML, Wu HB, Liu XM, Wang YR, Lei M, Liu WJ, et al. Optical properties and applications of SnS2 SAs with different thickness. Opto Electron Adv 2021;4(10):200029. 200021-200029-200010.

[7]
DongLChuHLiYZhaoSLiDThird-order nonlinear optical responses of CuO nanosheets for ultrafast pulse generationJ Materiomics202285117

Dong L, Chu H, Li Y, Zhao S, Li D. Third-order nonlinear optical responses of CuO nanosheets for ultrafast pulse generation. J Materiomics 2022;8:511–7.

10.1016/j.jmat.2021.06.007
[8]

Zhou SH, Chen K, Cole MT, Li ZJ, Chen J, Li C, Dai Q. Ultrafast field-emission electron sources based on nanomaterials. Adv Mater 2019;31:1805845.

[9]
ZengYShenZWuXWangDXWangYLSunYLBack contact modification of the optoelectronic device with transition metal dichalcogenide VSe2 film drives solar cell efficiencyJ Materiomics202174707

Zeng Y, Shen Z, Wu X, Wang DX, Wang YL, Sun YL, et al. Back contact modification of the optoelectronic device with transition metal dichalcogenide VSe2 film drives solar cell efficiency. J Materiomics 2021;7:470–7.

10.1016/j.jmat.2020.11.008
[10]

Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics 2010;4:611–22.

[11]

Zhang YX, Lu DZ, Yu HH, Zhang HJ. Low-dimensional saturable absorbers in the visible spectral region. Adv Opt Mater 2019;7:1800886.

[12]

Lu SB, Miao LL, Guo ZN, Qi X, Zhao CJ, Zhang H, Wen SC, Tang DY, Fan DY. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt Express 2015;23:11183–94.

[13]

Liu WJ, Xiong XL, Liu ML, Xing XW, Chen HL, Ye H, Han JF, Wei ZY. Bi4Br4-based saturable absorber with robustness at high power for ultrafast photonic device. Appl Phys Lett 2022;120:053108.

[14]

Wang KP, Wang J, Fan JT, Lotya M, O'Neill A, Fox D, Feng YY, Zhang XY, Jiang BX, Zhao QZ, Zhang HZ, Coleman JN, Zhang L, Blau WJ. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013;7:9260–7.

[15]

Liu WJ, Liu ML, Liu B, Quhe RG, Lei M, Fang SB, Teng H, Wei ZY. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt Express 2019;27:6689–99.

[16]

Wang L, Zhang SF, McEvoy N, Sun YY, Huang JW, Xie YF, Dong NN, Zhang XY, Kislyakov IM, Nunzi JM, Zhang L, Wang J. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photon Rev 2019;13:13.

[17]

Liu WJ, Pang LH, Han HN, Bi K, Lei M, Wei ZY. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 2017;9:5806–11.

[18]

Yu J, Kuang XF, Li JZ, Zhong JH, Zeng C, Cao LK, Liu ZW, Zeng ZXS, Luo ZY, He TC, Pan AL, Liu YP. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat Commun 2021;12:1083.

[19]

Li N, Huang JJ, Xu B, Cai YQ, Lu J, Zhan LJ, Luo ZQ, Xu HY, Cai ZP, Cai WW. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr:LiYF4 visible laser. Photon Res 2019;7:1209–13.

[20]

Zhang YX, Yu HH, Zhang R, Zhao G, Zhang HJ, Chen YX, Mei LM, Tonelli M, Wang JY. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range. Opt Lett 2017;42:547–50.

[21]

Liu WJ, Zhu YN, Liu ML, Wen B, Fang SB, Teng H, Lei M, Liu LM, Wei ZY. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photon Res 2018;6:220–7.

[22]

Yu Q, Wang S, Zhang Y, Dong Z, Deng HQ, Guo K, Wang T, Shi XY, Liu FQ, Xian TH, Zhu SC, Wu J, Zhang ZY, Zhang K, Zhan L. Femtosecond ultrafast pulse generation with high-quality 2H-TaS2 nanosheets via top-down empirical approach. Nanoscale 2021;13:20471–80.

[23]

Yang ZX, Yang Q, Ren XH, Tian YL, Zu YQ, Li C, Din SZU, Leng JC, Liu J. Passively mode-locked red Pr:LiYF4 laser based on a two-dimensional palladium diselenide saturable absorber. Opt Express 2022;30:2900–8.

[24]

Liu WJ, Pang LH, Han HN, Liu ML, Lei M, Fang SB, Teng H, Wei ZY. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt Express 2017;25:2950–9.

[25]

Yang Q, Cao YP, Liu XQ, Lun XL, Wang PC, Wang XY. Passive Q-switching of Pr: LiYF4 visible laser using SnS2 as a saturable absorber. Opt Laser Technol 2019;112:183–7.

[26]

Dong L, Chu HW, Wang X, Li Y, Zhao SZ, Li DC. Enhanced broadband nonlinear optical response of TiO2/CuO nanosheets via oxygen vacancy engineering. Nanophotonics 2021;10:1541–51.

[27]

Zhang M, Wu Q, Zhang F, Chen LL, Jin XX, Hu YW, Zheng Z, Zhang H. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv Opt Mater 2019;7:1800224.

[28]

Liu WJ, Liu ML, Yin JD, Chen H, Lu W, Fang SB, Teng H, Lei M, Yan PG, Wei ZY. Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale 2018;10:7971–7.

[29]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.

[30]

Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater 2018;30:1804779.

[31]

Gao LF, Li C, Huang WC, Mei S, Lin H, Ou Q, Zhang Y, Guo J, Zhang F, Xu SX, Zhang H. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem Mater 2020;32:1703–47.

[32]

Jiang XT, Kuklin AV, Baev A, Ge YQ, Ågren H, Zhang H, Prasad PN. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys Rep 2020;848:1–58.

[33]
JiangXTLiuSXLiangWYLuoSJHeZLGeYQWangHDCaoRZhangFWenQLiJQBaoQLFanDYZhangHBroadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH)Laser Photon Rev201812170022910.1002/lpor.201700229

Jiang XT, Liu SX, Liang WY, Luo SJ, He ZL, Ge YQ, Wang HD, Cao R, Zhang F, Wen Q, Li JQ, Bao QL, Fan DY, Zhang H. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon Rev 2018;12:1700229.

[34]
YangQZhangFZhangNYZhangHFew-layer MXene Ti3C2Tx (T = F, O, or OH) saturable absorber for visible bulk laserOpt Mater Express201991795180210.1364/ome.9.001795

Yang Q, Zhang F, Zhang NY, Zhang H. Few-layer MXene Ti3C2Tx (T = F, O, or OH) saturable absorber for visible bulk laser. Opt Mater Express 2019;9: 1795–802.

[35]

Sun XL, Zhang BT, Yan BZ, Li GR, Nie HK, Yang KJ, Zhang CQ, He JL. Few-layer Ti3C2Tx (T=O, OH, or F) saturable absorber for a femtosecond bulk laser. Opt Lett 2018;43:3862–5.

[36]
EnyashinANIvanovskiiALTwo-dimensional titanium carbonitrides and their hydroxylated derivatives: structural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculationsJ Solid State Chem201320742810.1016/j.jssc.2013.09.010

Enyashin AN, Ivanovskii AL. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: structural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations. J Solid State Chem 2013;207:42–8.

[37]

Chen XZ, Kong ZZ, Li N, Zhao XJ, Sun CH. Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study. Phys Chem Chem Phys 2016;18:32937–43.

[38]

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano 2012;6: 1322–31.

[39]

Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 2013;4:1716.

[40]

Zhu JW, Wang M, Lyu MQ, Jiao YL, Du A, Luo B, Gentle I, Wang LZ. Two-dimensional titanium carbonitride mxene for high-performance sodium ion batteries. ACS Appl Nano Mater 2018;1:6854–63.

[41]

Jhon YI, Koo J, Anasori B, Seo M, Lee JH, Gogotsi Y, Jhon YM. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater 2017;29: 1702496.

[42]

Gao LF, Chen HL, Kuklin AV, Wageh S, Al-Ghamdi AA, Ågren H, Zhang H. Optical properties of few-layer Ti3CN MXene: from experimental observations to theoretical calculations. ACS Nano 2022;16:3059–69.

[43]

Gao LF, Chen HL, Zhang F, Mei S, Zhang Y, Bao WL, Ma CY, Yin P, Guo J, Jiang XT, Xu SX, Huang WC, Feng XB, Xu FM, Wei SR, Zhang H. Ultrafast relaxation dynamics and nonlinear response of few-layer niobium carbide MXene. Small Methods 2020;4:2000250.

[44]

Yang ZX, Gao LF, Chen HL, Zhang F, Yang Q, Ren XH, Zaheer Ud Din S, Li C, Leng JC, Zhang JB, Lin ZW, Wang JM, Li CL, Zhang H. Broadband few-layer niobium carbide MXene as saturable absorber for solid-state lasers. Opt Laser Technol 2021;142:107199.

[45]

Yang TQ, Gao LF, Wang WX, Kang JL, Zhao GH, Li DL, Chen W, Zhang H. Berlin green framework-based gas sensor for room-temperature and high-selectivity detection of ammonia. Nano-Micro Lett 2021;13:63.

[46]

Lipatov A, Lu HD, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci Adv 2018;4:eaat0491.

[47]

Wang KP, Ju YF, He J, Zhang L, Chen Y, Blau WJ, Wang J. Nonlinear optical propagation in a tandem structure comprising nonlinear absorption and scattering materials. Appl Phys Lett 2014;104:021110.

Journal of Materiomics
Pages 44-55
Cite this article:
Yang Z, Yang Q, Tian Y, et al. Few-layer Ti3CN MXene for ultrafast photonics applications in visible band. Journal of Materiomics, 2023, 9(1): 44-55. https://doi.org/10.1016/j.jmat.2022.09.004

431

Views

21

Crossref

26

Web of Science

27

Scopus

Altmetrics

Received: 08 August 2022
Revised: 08 September 2022
Accepted: 09 September 2022
Published: 23 September 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return