AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries

Zhong Xua,1Xiang Chua,1Keli Wangb,1Haitao Zhanga( )Zhongqian HeaYanting XieaWeiqing Yanga,c ( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
College of Physics, Sichuan University, Chengdu, 641500, China
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, China

1 Zhong Xu, Xiang Chu and Keli Wang contributed equally to this work.]]>

Show Author Information

Graphical Abstract

Abstract

Silicon-based anodes with high theoretical capacity have intriguing potential applications for high energy density lithium-ion batteries (LIBs), while suffer from immense volumetric change and brittle solid-state electrolyte interface that causes collapse of electrodes. Here, a stress-dissipated conductive polymer binder (polyaniline with citric acid, PC) is developed to enhance the mechanical electrochemical performance between Si nanoparticles (SiNPs) and binders. Benefiting from the stable triangle network node of citric acid and a considerable distributed of hydroxyl groups, the PC binder can effectively dissipate the stress from SiNPs, thus providing an excellent cyclic stability of Si anodes. Both experimental results and theoretical calculation demonstrate the enhanced adhesion between binders and SiNPs could bond the particles tightly to form a robust electrode. The as-fabricated Si anode exhibits outstanding structural stability upon long-term cycles that exhibit a highly reversible capability of 1021 mA·h·g−1 over 500 cycles at a current density of 0.5 C (1 C = 4200 mA·g−1). Evidently, this stress-dissipated binder design will provide a promising route to achieve long-life Si-based LIBs.

References

[1]

Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem Rev 2014;114(23):11444-502. https://doi.org/10.1021/cr500207g.

[2]

Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008;3(1):31-5. https://doi.org/10.1038/nnano.2007.411.

[3]

Ge M, Cao C, Biesold GM, Sewell CD, Hao SM, Huang J, et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv Mater 2021;33(16):2004577. https://doi.org/10.1002/adma.202004577.

[4]

Zou F, Manthiram A. A review of the design of advanced binders for highperformance batteries. Adv Energy Mater 2020;10(45):2002508. https://doi.org/10.1002/aenm.202002508.

[5]

Deng L, Zheng Y, Zheng X, Or T, Ma Q, Qian L, et al. Design criteria for siliconbased anode binders in half and full cells. Adv Energy Mater 2022:2200850. https://doi.org/10.1002/aenm.202200850.

[6]

Ren WF, Le JB, Li JT, Hu YY, Pan SY, Deng L, et al. Improving the electrochemical property of silicon anodes through hydrogen-bonding cross-linked thiourea-based polymeric binders. ACS Appl Mater Interfaces 2021;13(1): 639-49. https://doi.org/10.1021/acsami.0c18743.

[7]

He J, Das C, Yang F, Maibach J. Crosslinked poly(acrylic acid) enhances adhesion and electrochemical performance of Si anodes in Li-ion batteries. Electrochim Acta 2022;411:140038. https://doi.org/10.1016/j.electacta.2022.140038.

[8]

Kim W-J, Kang JG, Kim D-W. Blood clot-inspired viscoelastic fibrin gel: new aqueous binder for silicon anodes in lithium ion batteries. Energy Storage Mater 2022;45:730-40. https://doi.org/10.1016/j.ensm.2021.12.024.

[9]

Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, et al. Silicon nanotube battery anodes. Nano Lett 2009;9(11):3844-7. https://doi.org/10.1021/nl902058c.

[10]

Zhang H, Braun PV. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. Nano Lett 2012;12(6):2778-83. https://doi.org/10.1021/nl204551m.

[11]

Song M-S, Chang G, Jung DW, Kwon M-S, Li P, Ku JH, et al. Strategy for boosting Li-ion current in silicon nanoparticles. ACS Energy Lett 2018;3(9): 2252-8. https://doi.org/10.1021/acsenergylett.8b01114.

[12]

Wang W, Kumta PN. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 2010;4(4):2233-41. https://doi.org/10.1021/nn901632g.

[13]

Zhu T, Liu G. Communicationdfunctional conductive polymer binder for practical Si-based electrodes. J Electrochem Soc 2021;168(5):050533. https://doi.org/10.1149/1945-7111/abff01.

[14]

Zhao YM, Yue FS, Li SC, Zhang Y, Tian ZR, Xu Q, et al. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries. Info 2021;3(5):460-501. https://doi.org/10.1002/inf2.12185.

[15]

Kwon TW, Choi JW, Coskun A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem Soc Rev 2018;47(6):2145-64. https://doi.org/10.1039/C7CS00858A.

[16]

Lin D, Lu Z, Hsu PC, Lee HR, Liu N, Zhao J, et al. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithiumion batteries. Energy Environ Sci 2015;8(8):2371-6. https://doi.org/10.1039/ C5EE01363A.

[17]

Xu Z, Chu X, Wang Y, Zhang H, Yang W. Three-dimensional polymer networks for solid-state electrochemical energy storage. Chem Eng J 2020;391:123548. https://doi.org/10.1016/j.cej.2019.123548.

[18]

Chu X, Chen G, Xiao X, Wang Z, Yang T, Xu Z, et al. Air-stable conductive polymer ink for printed wearable micro-supercapacitors. Small 2021;17(25): 2100956. https://doi.org/10.1002/smll.202100956.

[19]

Ghadimi F, Safa KD, Massoumi B, Entezami AA. Polyaniline doped with sulphosalicylic, salicylic and citric acid in solution and solid-state, Iran. Polym J 2002;11(3):159-66.

[20]

Zhang L, Long Y, Chen Z, Wan M. The effect of hydrogen bonding on selfassembled polyaniline nanostructures. Adv Funct Mater 2004;14(7):693-8. https://doi.org/10.1002/adfm.200305020.

[21]

Wu W, Pan D, Li Y, Zhao G, Jing L, Chen S. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim Acta 2015;152:126-34. https://doi.org/10.1016/j.electacta.2014.11.130.

[22]

Shi HY, Ye YJ, Liu K, Song Y, Sun X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew Chem Int Ed Engl 2018;57(50):16359-63. https://doi.org/10.1002/ange.201808886.

[23]

Li Z, Wan Z, Zeng X, Zhang S, Yan L, Ji J, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy 2021;79:105430. https://doi.org/10.1016/j.nanoen.2020.105430.

[24]

Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, et al. Dual-functional gum Arabic binder for silicon anodes in lithium ion batteries. Nano Energy 2015;12:178-85. https://doi.org/10.1016/j.nanoen.2014.12.011.

[25]

Guo S, Li H, Li Y, Han Y, Chen K, Xu G, et al. SiO2-Enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv Energy Mater 2018;8(24):1800434. https://doi.org/10.1002/aenm.201800434.

[26]

Wang Y, Zhang Q, Li D, Hu J, Xu J, Dang D, et al. Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation. Adv Energy Mater 2018;8(10):1702578. https://doi.org/10.1002/aenm.201702578.

[27]

Eshetu GG, Zhang H, Judez X, Adenusi H, Armand M, Passerini S, et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat Commun 2021;12(1):5459. https://doi.org/10.1038/s41467-021-25334-8.

[28]

Hu L, Zhang X, Zhao P, Fan H, Zhang Z, Deng J, et al. Gradient H-bonding binder enables stable high-areal-capacity Si-based anodes in pouch cells. Adv Mater 2021;33(52):2104416. https://doi.org/10.1002/adma.202104416.

[29]

Tan DHS, Chen YT, Yang H, Bao W, Sreenarayanan B, Doux JM, et al. Carbonfree high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021;373(6562):1494-9. https://doi.org/10.1126/science.abg7217.

[30]

Guo J, Dong D, Wang J, Liu D, Yu X, Zheng Y, et al. Silicon-based lithium ion battery systems: state-of-the-art from half and full cell viewpoint. Adv Funct Mater 2021;31(34):2102546. https://doi.org/10.1002/adfm.202102546.

[31]

Yang G, Frisco S, Tao R, Philip N, Bennett TH, Stetson C, et al. Robust solid/ electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett 2021;6(5):1684-93. https://doi.org/10.1021/ acsenergylett.0c02629.

[32]

Zhang Y, Wang Z, Hu K, Ren J, Yu N, Liu X, et al. Anchoring silicon on the basal plane of graphite via a three-phase heterostructure for highly reversible lithium storage. Energy Storage Mater 2021;34:311-9. https://doi.org/10.1016/j.ensm.2020.10.002.

[33]

Cao Z, Zheng X, Qu Q, Huang Y, Zheng H. Electrolyte design enabling a highsafety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv Mater 2021;33(38):2103178. https://doi.org/10.1002/adma.202103178.

[34]

Guo J, Sun A, Chen X, Wang C, Manivannan A. Cyclability study of siliconecarbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim Acta 2011;56(11):3981-7. https://doi.org/10.1016/j.electacta.2011.02.014.

[35]

Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 2011;4(1):56-72. https://doi.org/10.1039/C0EE00281J.

[36]

Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 2011;23(40):4679-83. https://doi.org/10.1002/adma.201102421.

[37]

Song J, Zhou M, Yi R, Xu T, Gordin ML, Tang D, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater 2014;24(37):5904-10. https://doi.org/10.1002/adfm.201401269.

[38]

Zeng W, Wang L, Peng X, Liu T, Jiang Y, Qin F, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv Energy Mater 2018;8(11):1702314. https://doi.org/10.1002/aenm.201702314.

[39]

Higgins TM, Park SH, King PJ, Zhang CJ, McEvoy N, Berner NC, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016;10(3):3702-13. https://doi.org/10.1021/acsnano.6b00218.

[40]

Zafar Abbas Manj R, Zhang F, Ur Rehman W, Luo W, Yang J. Toward understanding the interaction within Silicon-based anodes for stable lithium storage. Chem Eng J 2020;385:123821. https://doi.org/10.1016/j.cej.2019.123821.

[41]

Pinson MB, Bazant MZ. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J Electrochem Soc 2013;160(2):243-50. https://doi.org/10.1149/2.044302jes.

[42]

Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, et al. Self-healing SEI enables fullcell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%, Energ. Environ Sci 2017;10(2):580-92. https://doi.org/10.1039/C6EE02685K.

[43]

Chen J, Fan X, Li Q, Yang H, Khoshi MR, Xu Y, et al. Electrolyte design for LiFrich solideelectrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy 2020;5(5):386-97. https://doi.org/10.1038/s41560-020-0601-1.

[44]

Guo K, Kumar R, Xiao X, Sheldon BW, Gao H. Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes. Nano Energy 2020;68: 123821. https://doi.org/10.1016/j.nanoen.2019.104257.

[45]

Zhou Y, Yang Y, Hou G, Yi D, Zhou B, Chen S, et al. Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage. Nano Energy 2020;70: 104568. https://doi.org/10.1016/j.nanoen.2020.104568.

Journal of Materiomics
Pages 378-386
Cite this article:
Xu Z, Chu X, Wang K, et al. Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries. Journal of Materiomics, 2023, 9(2): 378-386. https://doi.org/10.1016/j.jmat.2022.09.013

495

Views

11

Crossref

12

Web of Science

11

Scopus

Altmetrics

Received: 17 August 2022
Revised: 13 September 2022
Accepted: 15 September 2022
Published: 11 October 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return