AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes

Lei Weia,bZhaoqing Jina,b( )Jianhao Lua,bYang Guob,cZilong Wanga,bGaoping Caoa,bJingyi Qiua,bAnbang Wanga,b( )Weikun Wanga,b( )
State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
Research Institute of Chemical Defense, Beijing, 100191, China
Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
Show Author Information

Graphical Abstract

Abstract

Lithium (Li) metal anode holds great promise for high-energy-density rechargeable batteries. However, it suffers from the Li dendrites growth and uncontrollable side reactions with electrolyte due to the unstable solid electrolyte interphase (SEI) layer. Herein, we propose a facile strategy for the in-situ fabricate of organic-inorganic composite artificial SEI layers on Li surfaces, which consist of organic fluorinated siloxane and inorganic LiF-rich phases. The hybrid artificial SEI endows high mechanical strength (13.1 GPa) and Li+ transfer number (0.62). Such robust SEI protective layers can not only guide uniform nucleation and deposition of Li metal by facilitating uniform Li-ion distribution, but also prevent unfavourable side reactions. Accordingly, the protected metallic lithium anode (PMTFPS-Li) anode enables stable Li plating/stripping performance in symmetric cells for more than 300 h at 4 mA ·h/cm2 under a high areal capacity of 4 mA/cm2. Moreover, the PMTFPS-Li/S cells could maintain more than 300 stable cycles at 0.5C and the PMTFPS-Li/LFP cells present excellent cycling performance (400 cycles at 1C) and enhanced rate capability (110.4 mA·h/g at 3 C). This work will inspire the design of artificial SEI on Li anodes for advanced Li metal batteries.

References

[1]

Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 2017;117: 10403-73.

[2]

Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017;12: 194-206.

[3]

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2012;11: 19-29.

[4]

Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J. Lithiumsulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 2015;5: 1401986.

[5]

Chen SR, Niu CJ, Lee H, Li QY, Yu L, Xu W, Zhang JG, Dufek EJ, Whittingham MS, Meng S, Xiao J, Liu J. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 2019;3: 1094-105.

[6]

Xu W, Wang JL, Ding F, Chen XL, Nasybutin E, Zhang YH, Zhang JG. Lithium metal anodes for rechargeable batteries. Energy Environ Sci 2014;7: 513-37.

[7]

Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 2017;3: 16-21.

[8]

Cao YL, Li M, Lu J, Liu J, Amine K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat Nanotechnol 2019;14: 200-7.

[9]

Liu J, Bao ZN, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, Li QY, Liaw BY, Liu P, Manthiram A, Meng YS, Subramanian VR, Toney MF, Viswanathan VV, Whittingham MS, Xiao J, Xu W, Yang JH, Yang XQ, Zhang JG. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy 2019;4: 180-6.

[10]

Xiang JW, Yang LY, Yuan LX, Yuan K, Zhang Y, Huang YY, Lin J, Pan F, Huang YH. Alkali-metal anodes: from lab to market. Joule 2019;3: 2334-63.

[11]

Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang JG. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 2013;135: 4450-6.

[12]

Li WY, Yao HB, Yan K, Zheng GY, Liang Z, Chiang YM, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 2015;6: 7436.

[13]

Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG. High rate and stable cycling of lithium metal anode. Nat Commun 2015;6: 6362.

[14]

Xie ZK, Wu ZJ, An XW, Yue XY, Yoshida A, Du X, Hao XG, Abudula A, Guan GQ. 2-Fluoropyridine: a novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chem Eng J 2020;393: 124789.

[15]

Zhang R, Cheng XB, Zhao CZ, Peng HJ, Shi JL, Huang JQ, Wang JF, Wei F, Zhang Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater 2016;28: 2155-62.

[16]

Lu LL, Ge J, Yang JN, Chen SM, Yao HB, Zhou F, Yu SH. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett 2016;16: 4431-7.

[17]

Yan K, Sun B, Munroe P, Wang GX. Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes. Energy Storage Mater 2018;11: 127-33.

[18]

Liu YD, Liu Q, Xin L, Liu YZ, Yang F, Stach EA, Xie J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy 2017;2: 17083.

[19]

Pan RJ, Xu XX, Sun R, Wang ZH, Lindh J, Edstrom K, Stromme M, Nyholm L. Nanocellulose modified polyethylene separators for lithium metal batteries. Small 2018;14: 1704371.

[20]

Zhao CZ, Chen PY, Zhang R, Chen X, Li BQ, Zhang XQ, Cheng XB, Zhang Q. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv 2018;4: eaat3446.

[21]

Hao ZD, Wu Y, Zhao Q, Tang JD, Zhang QQ, Ke XX, Liu JB, Jin YH, Wang H. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv Funct Mater 2021;31: 2102938.

[22]

Gao SL, Sun FY, Liu N, Yang HB, Cao PF. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries-A review. Mater Today 2020;40: 140-59.

[23]

Hu AJ, Chen W, Du XC, Hu Y, Lei TY, Wang HB, Xue LX, Li YY, Sun H, Yan YC, Long JP, Shu CZ, Zhu J, Li BH, Wang XF, Xiong J. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci 2021;14: 4115-24.

[24]

Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter 2019;1: 317-44.

[25]

Yu ZA, Cui Y, Bao ZN. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep Phys Sci 2020;1: 100119.

[26]

Zhao YM, Wang DW, Gao Y, Chen TH, Huang QQ, Wang DH. Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy 2019;64: 103893.

[27]

Yan TG, Li F, Xu Cy, Fang HT. Highly uniform lithiated nafion thin coating on separator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth. Electrochim Acta 2022;410: 140004.

[28]

Jin Q, Zhang XT, Gao H, Li L, Zhang ZG. Novel LixSiSy/Nafion as an artificial SEI film to enable dendrite-free Li metal anodes and high stability Li-S batteries. J Mater Chem 2020;8: 8979-88.

[29]

Wang L, Zhang L, Wang Q, Li W, Wu B, Jia W, Wang Y, Li J, Li H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater 2018;10: 16-23.

[30]

Tian R, Feng X, Duan H, Zhang P, Li H, Liu H, Gao L. Low-weight 3D Al2O3 network as an artificial layer to stabilize lithium deposition. ChemSusChem 2018;11: 3243-52.

[31]

Lang JL, Long YZ, Qu JL, Luo XY, Wei HH, Huang K, Zhang HT, Qi LH, Zhang QF, Li ZC, Wu H. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater 2019;16: 85-90.

[32]

Sheng JZ, Zhang Q, Liu MS, Han ZY, Li C, Sun CB, Chen B, Zhong XW, Qiu L, Zhou GM. Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries. Nano Lett 2021;21: 8447-54.

[33]

Tan J, Matz J, Dong P, Shen JF, Ye MX. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater 2021;11: 2100046.

[34]

Li T, Zhang XQ, Shi P, Zhang Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 2019;3: 2647-61.

[35]

Hou T, Yang G, Rajput NN, Self J, Park S-W, Nanda J, Persson KA. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 2019;64: 103881.

[36]

Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 2017;27: 1605989.

[37]

Fan XL, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang JJ, Xu K. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018;4: 174-85.

[38]

Eshetu GG, Judez X, Li CM, Martinez-Ibañez M, Gracia I, Bondarchuk O, Carrasco J, Rodriguez-Martinez LM, Zhang H, Armand M. Ultrahigh performance all solid-state lithium sulfur batteries: salt anion's chemistry-induced anomalous synergistic effect. J Am Chem Soc 2018;140: 9921-33.

[39]

Wang QD, Yao ZP, Zhao CL, Verhallen T, Tabor DP, Liu M, Ooms F, Kang FY, Aspuru-Guzik A, Hu YS, Wagemaker M, Li BH. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat Commun 2020;11: 4188.

[40]

Lin DC, Liu YY, Chen W, Zhou GM, Liu K, Dunn B, Cui Y. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon. Nano Lett 2017;17: 3731-7.

[41]

Zheng G, Lu M, Rui X, Shao B. Surface and bulk properties of waterborne polyurethane modified with fluorinated siloxane. J Appl Polym Sci 2018;135: 46473.

[42]

Yang Z, Bai Y, Meng L, Wang Y, Pang A, Guo X, Xiao J, Li W. A review of poly [(3, 3, 3-trifluoropropyl)methylsiloxane]: synthesis, properties and applications. Eur Polym J 2022;163: 110903.

[43]

Yang YH, Si ZH, Cai D, Teng XN, Li GZ, Wang Z, Li SF, Qin PY. High-hydrophobic CF3 groups within PTFPMS membrane for enhancing the furfural pervaporation performance. Separ Purif Technol 2020;235: 116144.

[44]

Liu F, Xiao Qf, Wu HB, Shen L, Xu D, Cai M, Lu YF. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv Energy Mater 2018;8: 1701744.

[45]

Wang YY, Wang ZJ, Zhao L, Fan QN, Zeng XH, Liu SL, Pang WK, He YB, Guo ZP. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv Mater 2021;33: e2008133.

[46]

Wang Y, Wang Z, Zhao L, Fan Q, Zeng X, Liu S, Pang WK, He Y-B, Guo Z. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv Mater 2021;33: 2008133.

[47]
Zhang J, Wang R, Yang XC, Lu W, Wu XD, Wang XP, Li H, Chen LW. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy, vol. 12; 2012. p. 2153-7.
[48]

Liu XR, Deng X, Liu RR, Yan HJ, Guo YG, Wang D, et al. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. ACS Appl Mater Interfaces 2014;6: 20317-23.

[49]

Ye H, Xin S, Yin YX, Guo YG. Advanced porous carbon materials for highefficient lithium metal anodes. Adv Energy Mater 2017;7: 1700530.

[50]

Yang QF, Hu JL, Meng JW, Li CL. C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ Sci 2021;14: 3621-31.

[51]

Li GX, Liu SP, Liu Z, Zhao YJ. High interfacial-energy and lithiophilic janus interphase enables stable lithium metal anodes. Small 2021;17: 2102196.

[52]

Gao YL, Guo MY, Yuan K, Shen C, Ren ZY, Zhang K, Zhao H, Qiao FH, Gu JL, Qi YQ, Xie KY, Wei BQ. Multifunctional silanization interface for high-energy and low-gassing lithium metal pouch cells. Adv Energy Mater 2020;10: 1903362.

[53]

Liu F, Xiao Q, Wu HB, Shen L, Xu D, Cai M, Lu Y. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv Energy Mater 2018;8: 1701744.

[54]

Liu T, Shi Z, Li HJ, Xue WJ, Liu SS, Yue JM, Mao ML, Hu Ys, Li H, Huang XJ, Chen LQ, Suo LM. Low-density fluorinated silane solvent enhancing deep cycle lithium-sulfur batteries' lifetime. Adv Mater 2021;33: 2102034.

Journal of Materiomics
Pages 318-327
Cite this article:
Wei L, Jin Z, Lu J, et al. In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. Journal of Materiomics, 2023, 9(2): 318-327. https://doi.org/10.1016/j.jmat.2022.09.018

405

Views

5

Crossref

6

Web of Science

6

Scopus

Altmetrics

Received: 12 September 2022
Accepted: 22 September 2022
Published: 29 October 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return