Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Transition-layer of core–rim structures and β→α transformation in SiC ceramics

Qing-Qing ShaoHui Gu()
Materials Genome Institute, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Similar to Si3N4 ceramics, β→α phase transformation in SiC ceramics plays a key role in tailoring the microstructures thus optimizing related properties. SiC microstructures are dominated with the core–rim structures by AlN-solution, and by EBSD analysis, α-lamellae were revealed as stacking-faults (SF) and twin-boundaries (TB) in β-grains, co-existing with the core–rim structures as α/β→α'/β' transformation by sintering. The structural transformation can proceed much further by gas-pressure-sintering than hot-pressing with only RE2O3 agents, while the latter retain a high-density of SF/TB in the metastable β-SiC grains. By high-angle secondary-electron imaging, nanoscale transition-layer (TL) was observed as an inter-phase to fully separate the core and rim, which is created by a transitory equilibrium in the solution–reprecipitation process. The enrichment of AlN or RE in TL demonstrates their segregation to core surface until reaching the super-saturation and before the growth of rims. With higher AlN or RE solution and after sintering, a shear stress can develop from TL contour to drive the expansion of SF/TB in Martensitic transition, especially under an external isotropic pressure. The combinations of β→α transformation, core–rim structures and viscous liquid-phase enable the comprehensive assessment of sintering–microstructure–property–performance relationship of SiC ceramics, as demonstrated for their creep behaviors and fracture toughness.

References

[1]

Lee TH, Bhunia S, Mehregany M. Electromechanical computing at 500℃ with silicon carbide. Science 2010;329: 1316-8.

[2]

Cheng H, Yang M-J, Lai Y-F, Hu M-W, Li Q-Z, Tu R, Zhang S, Han M-X, Goto T, Zhang L-M. Transparent highly oriented 3C-SiC bulks by halide laser CVD. J Eur Ceram Soc 2018;38: 3057-63.

[3]

Jepps NW, Page TF. Polytypic transformations in silicon carbide. Prog Cryst Growth Char 1983;7: 259-307.

[4]
Kimoto T, Cooper JA. Fundamentals of silicon carbide Technology: growth, characterization, devices and applications. Wiley-IEEE Press; 2014. p. 125-87.
[5]

Mitchell TE, Ogbuji LU, Heuer AH. β→α transformation in polycrystalline SiC: Ⅱ Interfacial energetics. J Am Ceram Soc 1978;61: 412-3.

[6]

Nader M, Aldinger F, Hoffmann MJ. Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide. J Mater Sci 1999;34: 1197-204.

[7]

Moberlychan WJ, Cao JJ, DeJonghe LC. The roles of amorphous grain boundaries and the β–α transformation in toughening SiC. Acta Mater 1998;46: 1625-35.

[8]

Camuşcu N, Thompson DP, Mandal H. Effect of starting composition, type of rare earth sintering additive and amount of liquid phase on α ⇆ β sialon transformation. J Eur Ceram Soc 1997;17: 599-613.

[9]

Ekstrom T, Falk LKL, Shen ZJ. Duplex α, β-sialon ceramics stabilized by dysprosium and samarium. J Am Ceram Soc 1997;80: 301-12.

[10]

Suematsu H, Mitomo M, Mitchell TE, Petrovic JJ, Fukunaga O, Ohashi N. The α-β transformation in silicon nitride single crystals. J Am Ceram Soc 1997;80: 615-20.

[11]

Zenotchkine M, Shuba R, Kim JS, Chen I-W. Effect of seeding on the microstructure and mechanical properties of α-SiAlON: I Y-SiAlON. J Am Ceram Soc 2002;85: 1254-9.

[12]

Kim YW, Lee SH, Nishimura T, Mamoru M. Heat-resistant silicon carbide with aluminum nitride and scandium oxide. Acta Mater 2005;53: 4701-8.

[13]

Rixecker G, Wiedmann I, Rosinus A, Aldinger F. High-temperature effects in the fracture mechanical behaviour of silicon carbide liquid-phase sintered with AlNeY2O3 additives. J. J Eur. Ceram. Soc. 2001;21: 1013-9.

[14]

Hu J-F, Gu H, Chen Z, Tan S, Jiang D, Rühle M. Core-shell structure from the solution-reprecipitation process in hot-pressed AlN-doped SiC ceramics. Acta Mater 2007;55: 5666-73.

[15]

Huang R, Gu H, Aldinger F. Intergranular oxynitride to regulate solution-reprecipitation process in gas-pressure-sintered SiC ceramics with AlN-Y2O3 additives. Adv Eng Mater 2019;21: 1800821.

[16]

Zhao T-T, Gu H, Wang X-H, Xing J-J, Zhu W-L. Revealing correlation of core rim structures, defects and stacking-faults in SiC ceramics by integrated scanning electron microscopy. J Eur Ceram Soc 2021;41: 204-12.

[17]

Zhu B, Gu H, Holzer S, Hoffmann MJ. Effect of intergranular glass on phase relation of Nd-alpha-sialon. Scripta Mater 2006;54: 1469-73.

[18]

Zangvil A, Ruh R. Phase relationships in the silicon carbide-aluminum nitride system. J Am Ceram Soc 1988;71: 884-90.

[19]

Sheng Y, Gu H, Xing J-J, Li J-T. Evolution of coreerim structures and phase transformations in infra-red transmitting Y-α-SiAlON ceramics. J Eur Ceram Soc 2022;42: 1354-61.

[20]

Hu T-Y, Yao M-Y, Hu D-L, Gu H, Wang Y-J. Effect of mechanical alloying on sinterability and phase evolution in pressure-less sintered TiB2‒TiC ceramics. J. Materiomics 2019;5: 670-8.

[21]

Hu D-L, Gu H, Zou J, Zheng Q, Zhang G-J. Core‒rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2‒SiC‒MC ceramics (M=Nb, Hf, Ta, W). J. Materiomics 2021;7: 69-79.

[22]

Biswas K, Rixecker G, Wiedmann I, Schweizer M, Upadhyaya GS, Aldinger F. Liquid phase sintering and microstructure-property relationships of silicon carbide ceramics with oxynitride additives. Mater Chem Phys 2001;67: 180-91.

[23]

Izhevskyi VA, Genova LA, Bressiani AHA, Bressiani JC. Microstructure and properties tailoring of liquid-phase sintered SiC. Int J Refract Metals Hard Mater 2001;19: 409-17.

[24]

Schneider J, Biswas K, Rixecker G, Aldinger F. Microstructural changes in liquid-phase-sintered silicon carbide during creep in an oxidizing environment. J Am Ceram Soc 2003;86: 501-7.

[25]

Biswas K, Rixecker G, Aldinger F. Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC. Mater. Sci. Engin. A-Struc. Mater. Proper. Microstr. Proces. 2004;374: 56-63.

[26]

Gu H, Cannon RM, Rühle M. Composition and chemical width of ultrathin amorphous films at grain boundaries in silicon nitride. J Mater Res 1998;13: 376-87.

[27]

Gu H, Wakai F. Segregation and local structure at grain boundaries in SiO2-doped tetragonal ZrO2 polycrystalline materials. J Mater Synth Process 1998;6: 393-9.

[28]

Gu H, Shinoda Y, Wakai F. Detection of boron segregation to grain boundaries in silicon carbide by spatially resolved electron energy-loss spectroscopy. J Am Ceram Soc 1999;82: 469-72.

[29]

Duscher G, Chisholm MF, Alber U, Rühle M. Bismuth-induced embrittlement of copper grain boundaries. Nat Mater 2004;3: 621-6.

[30]

Zhang XF, Sixta ME, DeJonghe LC. Grain boundary evolution in hot-pressed ABC-SiC. J Am Ceram Soc 2000;83: 2813-20.

[31]

Gu H. Evolution of intergranular boundaries and phases in SiC and Si3N4 ceramics under high temperature deformation: case studies by analytical TEM. Z Metallkd 2004;95: 271-4.

[32]

Zheng Q, Gu H, Hu D-L, Zhang G-J. Transient liquid-phase to guide multiphase evolution in reactive-hot-pressed ZrB2-SiC-ZrC ceramics. J. Materiomics 2020;6: 607-17.

[33]

Hwang S-L, Chen I-W. Nucleation and growth of α'-SiAlON on α-Si3N4. J Am Ceram Soc 1994;77: 1711-8.

[34]

Hwang S-L, Chen I-W. Nucleation and growth of β'-SiAlON. J Am Ceram Soc 1994;77: 1719-28.

[35]

Ruh R, Zangvil A. Composition and properties of hot-pressed SiCeAlN solid solutions. J Am Ceram Soc 1982;65: 260-5.

[36]

Li Z, Bradt RC. Thermal expansion and thermal expansion anisotropy of SiC polytypes. J Am Ceram Soc 1987;70: 445-8.

[37]

Lubis AH, Hecht NL, Graves GA, Ruh R. Microstructure-property relations of hot-pressed silicon carbide-aluminum nitride compositions at room and elevated temperatures. J Am Ceram Soc 1999;82: 2481-9.

[38]

Rixecker G, Biswas K, Rosinus A, Sharma S, Wiedmann I, Aldinger F. Fracture properties of SiC ceramics with oxynitride additives. J Eur Ceram Soc 2002;22: 2669-75.

[39]

She J-H, Jiang D-L, Tan S-H, Guo J-K. Improvement of presintered silicon carbide ceramics by hot isostatic pressing. Mater Res Bull 1991;26: 1277-82.

[40]

Greil P, Bossemeyer HG, Klüner A, Jiang D-L, She J-H. Surface toughening of liquid phase sintered silicon carbide by surface nitridation. J Eur Ceram Soc 1994;13: 159-66.

Journal of Materiomics
Pages 299-309
Cite this article:
Shao Q-Q, Gu H. Transition-layer of core–rim structures and β→α transformation in SiC ceramics. Journal of Materiomics, 2023, 9(2): 299-309. https://doi.org/10.1016/j.jmat.2022.10.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return