Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Similar to Si3N4 ceramics, β→α phase transformation in SiC ceramics plays a key role in tailoring the microstructures thus optimizing related properties. SiC microstructures are dominated with the core–rim structures by AlN-solution, and by EBSD analysis, α-lamellae were revealed as stacking-faults (SF) and twin-boundaries (TB) in β-grains, co-existing with the core–rim structures as α/β→α'/β' transformation by sintering. The structural transformation can proceed much further by gas-pressure-sintering than hot-pressing with only RE2O3 agents, while the latter retain a high-density of SF/TB in the metastable β-SiC grains. By high-angle secondary-electron imaging, nanoscale transition-layer (TL) was observed as an inter-phase to fully separate the core and rim, which is created by a transitory equilibrium in the solution–reprecipitation process. The enrichment of AlN or RE in TL demonstrates their segregation to core surface until reaching the super-saturation and before the growth of rims. With higher AlN or RE solution and after sintering, a shear stress can develop from TL contour to drive the expansion of SF/TB in Martensitic transition, especially under an external isotropic pressure. The combinations of β→α transformation, core–rim structures and viscous liquid-phase enable the comprehensive assessment of sintering–microstructure–property–performance relationship of SiC ceramics, as demonstrated for their creep behaviors and fracture toughness.
Lee TH, Bhunia S, Mehregany M. Electromechanical computing at 500℃ with silicon carbide. Science 2010;329: 1316-8.
Cheng H, Yang M-J, Lai Y-F, Hu M-W, Li Q-Z, Tu R, Zhang S, Han M-X, Goto T, Zhang L-M. Transparent highly oriented 3C-SiC bulks by halide laser CVD. J Eur Ceram Soc 2018;38: 3057-63.
Jepps NW, Page TF. Polytypic transformations in silicon carbide. Prog Cryst Growth Char 1983;7: 259-307.
Mitchell TE, Ogbuji LU, Heuer AH. β→α transformation in polycrystalline SiC: Ⅱ Interfacial energetics. J Am Ceram Soc 1978;61: 412-3.
Nader M, Aldinger F, Hoffmann MJ. Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide. J Mater Sci 1999;34: 1197-204.
Moberlychan WJ, Cao JJ, DeJonghe LC. The roles of amorphous grain boundaries and the β–α transformation in toughening SiC. Acta Mater 1998;46: 1625-35.
Camuşcu N, Thompson DP, Mandal H. Effect of starting composition, type of rare earth sintering additive and amount of liquid phase on α ⇆ β sialon transformation. J Eur Ceram Soc 1997;17: 599-613.
Ekstrom T, Falk LKL, Shen ZJ. Duplex α, β-sialon ceramics stabilized by dysprosium and samarium. J Am Ceram Soc 1997;80: 301-12.
Suematsu H, Mitomo M, Mitchell TE, Petrovic JJ, Fukunaga O, Ohashi N. The α-β transformation in silicon nitride single crystals. J Am Ceram Soc 1997;80: 615-20.
Zenotchkine M, Shuba R, Kim JS, Chen I-W. Effect of seeding on the microstructure and mechanical properties of α-SiAlON: I Y-SiAlON. J Am Ceram Soc 2002;85: 1254-9.
Kim YW, Lee SH, Nishimura T, Mamoru M. Heat-resistant silicon carbide with aluminum nitride and scandium oxide. Acta Mater 2005;53: 4701-8.
Rixecker G, Wiedmann I, Rosinus A, Aldinger F. High-temperature effects in the fracture mechanical behaviour of silicon carbide liquid-phase sintered with AlNeY2O3 additives. J. J Eur. Ceram. Soc. 2001;21: 1013-9.
Hu J-F, Gu H, Chen Z, Tan S, Jiang D, Rühle M. Core-shell structure from the solution-reprecipitation process in hot-pressed AlN-doped SiC ceramics. Acta Mater 2007;55: 5666-73.
Huang R, Gu H, Aldinger F. Intergranular oxynitride to regulate solution-reprecipitation process in gas-pressure-sintered SiC ceramics with AlN-Y2O3 additives. Adv Eng Mater 2019;21: 1800821.
Zhao T-T, Gu H, Wang X-H, Xing J-J, Zhu W-L. Revealing correlation of core rim structures, defects and stacking-faults in SiC ceramics by integrated scanning electron microscopy. J Eur Ceram Soc 2021;41: 204-12.
Zhu B, Gu H, Holzer S, Hoffmann MJ. Effect of intergranular glass on phase relation of Nd-alpha-sialon. Scripta Mater 2006;54: 1469-73.
Zangvil A, Ruh R. Phase relationships in the silicon carbide-aluminum nitride system. J Am Ceram Soc 1988;71: 884-90.
Sheng Y, Gu H, Xing J-J, Li J-T. Evolution of coreerim structures and phase transformations in infra-red transmitting Y-α-SiAlON ceramics. J Eur Ceram Soc 2022;42: 1354-61.
Hu T-Y, Yao M-Y, Hu D-L, Gu H, Wang Y-J. Effect of mechanical alloying on sinterability and phase evolution in pressure-less sintered TiB2‒TiC ceramics. J. Materiomics 2019;5: 670-8.
Hu D-L, Gu H, Zou J, Zheng Q, Zhang G-J. Core‒rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2‒SiC‒MC ceramics (M=Nb, Hf, Ta, W). J. Materiomics 2021;7: 69-79.
Biswas K, Rixecker G, Wiedmann I, Schweizer M, Upadhyaya GS, Aldinger F. Liquid phase sintering and microstructure-property relationships of silicon carbide ceramics with oxynitride additives. Mater Chem Phys 2001;67: 180-91.
Izhevskyi VA, Genova LA, Bressiani AHA, Bressiani JC. Microstructure and properties tailoring of liquid-phase sintered SiC. Int J Refract Metals Hard Mater 2001;19: 409-17.
Schneider J, Biswas K, Rixecker G, Aldinger F. Microstructural changes in liquid-phase-sintered silicon carbide during creep in an oxidizing environment. J Am Ceram Soc 2003;86: 501-7.
Biswas K, Rixecker G, Aldinger F. Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC. Mater. Sci. Engin. A-Struc. Mater. Proper. Microstr. Proces. 2004;374: 56-63.
Gu H, Cannon RM, Rühle M. Composition and chemical width of ultrathin amorphous films at grain boundaries in silicon nitride. J Mater Res 1998;13: 376-87.
Gu H, Wakai F. Segregation and local structure at grain boundaries in SiO2-doped tetragonal ZrO2 polycrystalline materials. J Mater Synth Process 1998;6: 393-9.
Gu H, Shinoda Y, Wakai F. Detection of boron segregation to grain boundaries in silicon carbide by spatially resolved electron energy-loss spectroscopy. J Am Ceram Soc 1999;82: 469-72.
Duscher G, Chisholm MF, Alber U, Rühle M. Bismuth-induced embrittlement of copper grain boundaries. Nat Mater 2004;3: 621-6.
Zhang XF, Sixta ME, DeJonghe LC. Grain boundary evolution in hot-pressed ABC-SiC. J Am Ceram Soc 2000;83: 2813-20.
Gu H. Evolution of intergranular boundaries and phases in SiC and Si3N4 ceramics under high temperature deformation: case studies by analytical TEM. Z Metallkd 2004;95: 271-4.
Zheng Q, Gu H, Hu D-L, Zhang G-J. Transient liquid-phase to guide multiphase evolution in reactive-hot-pressed ZrB2-SiC-ZrC ceramics. J. Materiomics 2020;6: 607-17.
Hwang S-L, Chen I-W. Nucleation and growth of α'-SiAlON on α-Si3N4. J Am Ceram Soc 1994;77: 1711-8.
Hwang S-L, Chen I-W. Nucleation and growth of β'-SiAlON. J Am Ceram Soc 1994;77: 1719-28.
Ruh R, Zangvil A. Composition and properties of hot-pressed SiCeAlN solid solutions. J Am Ceram Soc 1982;65: 260-5.
Li Z, Bradt RC. Thermal expansion and thermal expansion anisotropy of SiC polytypes. J Am Ceram Soc 1987;70: 445-8.
Lubis AH, Hecht NL, Graves GA, Ruh R. Microstructure-property relations of hot-pressed silicon carbide-aluminum nitride compositions at room and elevated temperatures. J Am Ceram Soc 1999;82: 2481-9.
Rixecker G, Biswas K, Rosinus A, Sharma S, Wiedmann I, Aldinger F. Fracture properties of SiC ceramics with oxynitride additives. J Eur Ceram Soc 2002;22: 2669-75.
She J-H, Jiang D-L, Tan S-H, Guo J-K. Improvement of presintered silicon carbide ceramics by hot isostatic pressing. Mater Res Bull 1991;26: 1277-82.
Greil P, Bossemeyer HG, Klüner A, Jiang D-L, She J-H. Surface toughening of liquid phase sintered silicon carbide by surface nitridation. J Eur Ceram Soc 1994;13: 159-66.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).