AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Large electrocaloric effect over a wide temperature span in lead-free bismuth sodium titanate-based relaxor ferroelectrics

Xiaopo SuaJunjie Lia,cYuxuan HouaRuowei YinaJianting Lia,dShiqiang QinaYanjing SuaLijie QiaoaChuanbao LiubYang Baia( )
Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
Show Author Information

Graphical Abstract

Abstract

For efficient solid-state refrigeration technologies based on electrocaloric effect (ECE), it is a great challenge of simultaneously obtaining a large adiabatic temperature change (ΔT) within a wide temperature span (Tspan) in lead-free ferroelectric ceramics. Here, we studied the electrocaloric effect (ECE) in (1-x)(Na0.5Bi0.5)TiO3-xCaTiO3 ((1-x)NBT-xCT) and explored the combining effect of morphotropic phase boundary (MPB) and relaxor feature. The addition of CT not only constructs a MPB region with the coexistence of rhombohedral and orthorhombic phases, but also enhances the relaxor feature. The ECE peak appears around the freezing temperature (Tf), and shifts toward to lower temperature with the increasing CT amount. The directly measured ECE result shows that the ceramic of x = 0.10, which is in the MPB region, has an optimal ECE property of ΔTmax = 1.28 K @ 60 ℃ under 60 kV/cm with a wide Tspan of 65 ℃. The enhanced ECE originates from the electric-field-induced transition between more types of polar nanoregions and long-range ferroelectric macrodomains. For the composition with more relaxor feature in the MPB region, such as x = 0.12, the ECE is relatively weak under low electric fields but it exhibits a sharp increment under a sufficiently high electric field. This work provides a guideline to develop the solid–state cooling devices for electronic components.

References

[1]

Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju YS, Pei Q. Highly efficient electrocaloric cooling with electrostatic actuation. Science 2017;357: 1130-4.

[2]

Shaik SV, Babu TA. Theoretical performance investigation of vapour compression refrigeration system using HFC and HC refrigerant mixtures as alternatives to replace R22. Energy Proc 2017;109: 235-42.

[3]

Atanasiu B, Bertoldi P. Latest assessment of residential electricity consumption and efficiency trends in the European Union. Int J Green Energy 2010;7: 552-75.

[4]

Scott JF. Electrocaloric materials. Annu Rev Mater Res 2011;41: 229-40.

[5]

Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 2006;311: 1270-1.

[6]

Neese B, Chu B, Lu S, Wang Y, Furman E, Zhang QM. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 2008;321: 821-3.

[7]

Lu SG, Zhang Q. Electrocaloric materials for solid-state refrigeration. Adv Mater 2009;21: 1983-7.

[8]

Lu SG, Cai ZH, Ouyang YX, Deng YM, Zhang SJ, Zhang QM. Electrical field dependence of electrocaloric effect in relaxor ferroelectrics. Ceram Int 2015;41: S15-8.

[9]

Xiang H, Xing Y, Dai F, Wang H, Su L, Miao L, Zhang G, Wang Y, Qi X, Yao L, Wang H, Zhao B, Li J, Zhou Y. High-entropy ceramics: present status, challenges, and a look forward. J Adv Ceram 2021;10: 385-441.

[10]

Liu Y, Scott JF, Dkhil B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl Phys Rev 2016;3: 031102.

[11]

Wang X, Wu J, Dkhil B, Xu B, Wang X, Dong G, Yang G, Lou X. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl Phys Lett 2017;110: 063904.

[12]

Yin R, Li J, Su X, Qin S, Yu C, Hou Y, Liu C, Su Y, Qiao L, Lookman T, Bai Y. Emergent enhanced electrocaloric effect within wide temperature span in laminated composite ceramics. Adv Funct Mater 2021;32: 2108182.

[13]

Niu X, Jian X, Chen X, Li H, Liang W, Yao Y, et al. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement. J Adv Ceram 2021;10: 482-92.

[14]

Shvartsman VV, Dkhil B, Kholkin AL. Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy. Annu Rev Mater Res 2013;43: 423-49.

[15]

Li J, Li J, Wu H, Qin S, Su X, Wang Y, Lou X, Guo D, Su Y, Qiao L, Bai Y. Giant electrocaloric effect and ultrahigh refrigeration efficiency in antiferroelectric ceramics by morphotropic phase boundary Design. Acs Appl Mater Inter 2020;12: 45005-14.

[16]

Weyland F, Acosta M, Koruza J, Breckner P, Rödel J, Novak N. Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv Funct Mater 2016;26: 7326-33.

[17]

Bai Y, Ding K, Zheng G, Shi S, Cao J, Qiao L. The electrocaloric effect around the orthorhombic- tetragonal first-order phase transition in BaTiO3. AIP Adv 2012;2: 022162.

[18]

Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Mañosa L, Mathur ND. Giant electrocaloric strength in single-crystal BaTiO3. Adv Mater 2013;25: 1360-5.

[19]

Li J, Wu H, Li J, Su X, Yin R, Qin S, Guo D, Su Y, Qiao L, Lookman T, Bai Y. Room-temperature symmetric giant positive and negative electrocaloric effect in PbMg0.5W0.5O3 antiferroelectric ceramic. Adv Funct Mater 2021;31: 2101176.

[20]

Hanani Z, Merselmiz S, Danine A, Stein N, Mezzane D, Amjoud MB, Lahcini M, Gagou Y, Spreitzer M, Vengust D, Kutnjak Z, El Marssi M, Luk Yanchuk IA, Gouné M. Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J Adv Ceram 2020;9: 210-9.

[21]

Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, Mao H, Hemley RJ, Ren Y, Liermann P, Wu Z. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008;451: 545-8.

[22]

Yang Y, Ji Y, Fang M, Zhou Z, Zhang L, Ren X. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivity. Phys Rev Lett 2019;123: 137601.

[23]

Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 2009;103: 257602.

[24]

Ma C, Guo H, Beckman SP, Tan X. Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3−BaTiO3 piezoelectrics. Phys Rev Lett 2012;109: 107602.

[25]

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M. Lead-free piezoceramics. Nature 2004;432: 84-7.

[26]

Li J, Li J, Wu H, Zhou O, Chen J, Lookman T, Su Y, Qiao L, Bai Y. Influence of phase transitions on electrostrictive and piezoelectric characteristics in PMNe30PT single crystals. Acs Appl Mater Inter 2021;13: 38467-76.

[27]

Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 2009;103: 257602.

[28]

Zhou Y, Lin Q, Liu W, Wang D. Compositional dependence of electrocaloric effect in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. RSC Adv 2016;6: 14084-9.

[29]

Bai Y, Wei D, Qiao L. Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3-PbTiO3 by phase composition and crystal orientation. Appl Phys Lett 2015;107: 192904.

[30]

Su X, Yin R, Hou Y, Li J, Li J, Qin S, Su Y, Qiao L, Liu C, Bai Y. Non-ergodiceergodic transition and corresponding electrocaloric effect in lead-free bismuth sodium titanate-based relaxor ferroelectrics. J Eur Ceram Soc 2022.

[31]

Yang J, Zhao Y, Lou X, Wu J, Hao X. Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J Mater Chem C 2020;8: 4030-9.

[32]

Li F, Li J, Zhai J, Shen B, Li S, Zhou M, Zhao K, Zeng H. Influence of structural evolution on electrocaloric effect in Bi0.5Na0.5TiO3-SrTiO3 ferroelectric ceramics. J Appl Phys 2018;124: 164108.

[33]

Li F, Chen G, Liu X, Zhai J, Shen B, Zeng H, et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.3)TiO3 ceramics. J Eur Ceram Soc 2017;37: 4732-40.

[34]

Meng L, Yuan C, Liu X, Xu J, Liu F, Zhou C, et al. Electrical microstructures of CaTiO3-Bi0.5Na0.5TiO3 microwave ceramics with high permittivity (εrmax ~ 487). J Alloys Compd 2019;803: 850-9.

[35]

Birks E, Dunce M, Ignatans R, Kuzmin A, Plaude A, Antonova M, Kundzins K, Sternberg A. Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions. J Appl Phys 2016;119: 074102.

[36]

Roukos R, Abou Dargham S, Romanos J, Barakat F, Chaumont D. Complex structural contribution of the morphotropic phase boundary in Na0.5Bi0.5TiO3-CaTiO3 system. Ceram Int 2019;45: 4467-73.

[37]

Roukos R, Abou Dargham S, Romanos J, Chaumont D. Detection of morphotropic phase boundary in A-site/Ca-substituted Na0.5Bi0.5TiO3 complex oxides ferroelectric system. J Alloys Compd 2020;840: 155509.

[38]

Roukos R, Romanos J, Abou Dargham S, Chaumont D. Quantification of relaxor behavior in (1-x)Na0.5Bi0.5TiO3xCaTiO3 lead-free ceramics system. J Eur Ceram Soc 2019;39: 2297-303.

[39]

Yu L, Dong J, Tang M, Liu Y, Wu F, Yan Y, Liu G, Song C. Enhanced electrical energy storage performance of Pb-free A-site La3+-doped 0.85Na0.5Bi0.5TiO3-0.15CaTiO3 ceramics. Ceram Int 2020;46: 28173-82.

[40]

Malathi AR, Murthy MS, Praveena VJU, Prasad G. Influence of calcium titanate on dielectric and ferroelectric properties of lead-free NBT-based composites. Emergent Mater 2022;5: 241-7.

[41]

Rout D, Moon KS, Park J, Kang S. High-temperature X-ray diffraction and Raman scattering studies of Ba-doped (Na0.5Bi0.5)TiO3 Pb-free piezoceramics. Curr Appl Phys 2013;13: 1988-94.

[42]

Liu X, Zhai J, Shen B. Local phenomena in bismuth sodium titanate perovskite studied by Raman spectroscopy. J Am Ceram Soc 2018;101: 5604-14.

[43]

Pirc R, Blinc R. Vogel-Fulcher freezing in relaxor ferroelectrics. Phys Rev B 2007;76: 020101.

[44]

Malathi AR, Praveena VU, Murthy MS, Prasad G. Vogel Fulcher analysis of electrical studies of NBT-CT ceramic composites. Mater Today Proc 2022;59: 449-58.

[45]

Trainer M. Ferroelectrics and the curie-weiss law. Eur J Phys 2000;21: 459.

[46]

Cai W, Fu C, Gao J, Lin Z, Deng X. Effect of hafnium on the microstructure, dielectric and ferroelectric properties of Ba[Zr0.2Ti0.8]O3 ceramics. Ceram Int 2012;38: 3367-75.

[47]

Tang XG, Chew K, Chan H. Diffuse phase transition and dielectric tunability of Ba(ZryTi1-y)O3 relaxor ferroelectric ceramics. Acta Mater 2004;52: 5177-83.

[48]

Lu S, Zhang Q. Electrocaloric materials for solid-state refrigeration. Adv Mater 2009;21: 1983-7.

[49]

Cheng X, Li Y, Zhu D, Li M, Feng M. Effects of uniaxial compressive stress on the electrocaloric effect of ferroelectric ceramics. J Mater Sci 2020;55: 8802-13.

[50]

Li J, Su X, Wu H, Li J, Qin S, Yin R, Liu C, Guo D, Su Y, Qiao L. Electric hysteresis and validity of indirect electrocaloric characterization in antiferroelectric ceramics. Scripta Mater 2022;216: 114763.

[51]

Li M, Zhu M, Wei Q, Zhang M, Zheng M, Hou Y, Zhu L, Li Y, Achieving large electrocaloric effect in a wide temperature span for (Na1/2Bi1/2)TiO3-based ceramics via the synergic effect of A-Site vacancies and B-Site complex cations. ACS Appl Electr Mater 2021;3: 5023-30.

[52]

Le Goupil F, Bennett J, Axelsson A, Valant M, Berenov A, Bell AJ, Comyn TP, Alford NM. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl Phys Lett 2015;107: 172903.

[53]

Turki O, Slimani A, Seveyrat L, Sebald G, Perrin V, Sassi Z, et al. Structural, dielectric, ferroelectric, and electrocaloric properties of 2% Gd2O3 doping (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics. J Appl Phys 2016;120: 054102.

[54]

Li J, Li J, Qin S, Su X, Qiao L, Wang Y, Lookman T, Bai Y. Effects of long- and short-range ferroelectric order on the electrocaloric effect in relaxor ferroelectric ceramics. Phys. Rev. Appl. 2019;11: 044032.

[55]

Li J, Zhang D, Qin S, Li T, Wu M, Wang D, Bai Y, Lou X. Large room-temperature electrocaloric effect in lead-free BaHfxTi1-xO3 ceramics under low electric field. Acta Mater 2016;115: 58-67.

[56]

Luo Z, Zhang D, Liu Y, Zhou D, Yao Y, Liu C, et al. Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature. Appl Phys Lett 2014;105: 102904.

[57]

Zhao C, Yang J, Huang Y, Hao X, Wu J. Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. J Mater Chem A 2019;7: 25526-36.

[58]

Li J, Bai Y, Qin S, Fu J, Zuo R, Qiao L. Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics. Appl Phys Lett 2016;109: 162902.

[59]

Yang J, Hao X. Electrocaloric effect and pyroelectric performance in (K, Na) NbO3-based lead-free ceramics. J Am Ceram Soc 2019;102: 6817-26.

[60]

Zhang L, Zhao C, Zheng T, Wu J. Large electrocaloric response with superior temperature stability in NaNbO3-based relaxor ferroelectrics benefiting from the crossover region. J Mater Chem A 2021;9: 2806-14.

[61]

Li F, Li K, Long M, Wang C, Chen G, Zhai J. Ferroelectric-relaxor crossover induce large electrocaloric effect with ultrawide temperature span in NaNbO3-based lead-free ceramics. Appl Phys Lett 2021;118: 043902.

[62]

Li F, Chen G, Liu X, Zhai J, Shen B, Li S, et al. Type–Ⅰ pseudo–first–order phase transition induced electrocaloric effect in lead–free Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. Appl Phys Lett 2017;110: 182904.

[63]

Li F, Chen G, Liu X, Zhai J, Shen B, Zeng H, et al. Phase–composition and temperature dependence of electrocaloric effect in lead–free Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.3)TiO3ceramics. Ferroelectr ceram 2017;37: 4732-40.

Journal of Materiomics
Pages 289-298
Cite this article:
Su X, Li J, Hou Y, et al. Large electrocaloric effect over a wide temperature span in lead-free bismuth sodium titanate-based relaxor ferroelectrics. Journal of Materiomics, 2023, 9(2): 289-298. https://doi.org/10.1016/j.jmat.2022.10.005

310

Views

9

Crossref

12

Web of Science

12

Scopus

Altmetrics

Received: 17 August 2022
Revised: 13 October 2022
Accepted: 21 October 2022
Published: 08 November 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return