AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Polyoxometalate-MnO2 film structure with bifunctional electrochromic and energy storage properties

Shi-Ming Wanga( )Yuan-Hang Jina,bTao WangbKai-Hua Wanga,cLin Liub( )
Light Industry College, Liaoning University, 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, China
College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, China
Shenyang Liaohe Special Glass Factory, 10 A, Zhongyang Road, Offshore Economic Development Zone, Liaozhong District, Shenyang, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The polyoxometalates-based electrochromic energy storage devices (POMs-EESDs) were constructed using P2W17O6111− coated TiO2 as the working electrode and MnO2 film as the counter electrode. The MnO2 films with different thicknesses acted as the charge balancing layer. The device showed bifunctional of enhanced EC and energy storage properties along with high durability and cycle stabilities after the introduction of MnO2 film. The optimistic thickness of MnO2 was found to be 345 nm through balancing the optical modulation and the energy storage properties. For the EC aspect, the optical contrast was enhanced by four times under the potential step of −2.0/1.0 V. The MnO2 film also introduces high capacitance leading to the device can be used as a transparent capacitor. It is the first time to construct high-performance POMs-based EESD only by introducing a simple charge balancing (MnO2) layer in the device. Moreover, the mechanism of the MnO2 layer towards the performance improvement of the POMs-based EESDs was also explained.

References

[1]

Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol 2017;12(1): 7-15. https://doi.org/10.1038/nnano.2016.196.

[2]

Zhang J, Yang J, Leftheriotis G, Huang H, Xia Y, Liang C, Gan Y, Zhang W. Integrated photo-chargeable electrochromic energy-storage devices. Electrochim Acta 2020;345:136235. https://doi.org/10.1016/j.electacta.2020.136235.

[3]

Kim Y, Shin H, Han M, Seo S, Lee W, Na J, Park C, Kim E. Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer. Adv Funct Mater 2017;27(31): 1701192. https://doi.org/10.1002/adfm.201701192.

[4]

Zhang L, Chao D, Yang P, Weber L, Li J, Kraus T, Fan HJ. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv Energy Mater 2020;10(17): 2000142. https://doi.org/10.1002/aenm.202000142.

[5]

Huang Y, Wang B, Chen F, Han Y, Zhang W, Wu X, Li R, Jiang Q, Jia X, Zhang R. Electrochromic materials based on ions insertion and eaxtraction. Adv Opt Mater 2021;10(4): 2101783. https://doi.org/10.1002/adom.202101783.

[6]

Yun TG, Kim D, Kim YH, Park M, Hyun S, Han SM. Photoresponsive smart coloration electrochromic supercapacitor. Adv Mater 2017;29(32): 1606728. https://doi.org/10.1002/adma.201606728.

[7]

Zhao Q, Xu W, Sun H, Yang J, Zhang KY, Liu S, Ma Y, Huang W. Tunable electrochromic luminescence of iridium(Ⅲ) complexes for information self-encryption and anti-counterfeiting. Adv Opt Mater 2016;4(8): 1167-73. https://doi.org/10.1002/adom.201600065.

[8]

Jia X, Baird EC, Blochwitz-Nimoth J, Reineke S, Vandewal K, Spoltore D. Selectively absorbing small-molecule solar cells for self-powered electrochromic windows. Nano Energy 2021;89:106404. https://doi.org/10.1016/j.nanoen.2021.106404.

[9]

Davy NC, Sezen-Edmonds M, Gao J, Lin X, Liu A, Yao N, Kahn A, Loo Y-L. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat Energy 2017;2(8): 17104. https://doi.org/10.1038/nenergy.2017.104.

[10]

Tang Y, Zhang L, Yan S, Kuai Y, Fu H, Li W, Ouyang M, Zhang C. Black-to-transmissive polymer films via electrochemical copolymerization with high-performance electrochromic and supercapacitor bifunction. Sol Energy Mater Sol Cells 2022;245:111857. https://doi.org/10.1016/j.solmat.2022.111857.

[11]

Ezhilmaran B, Bhat SV. Rationally designed bilayer heterojunction electrode to realize multivalent ion intercalation in bifunctional devices: efficient aqueous aluminum electrochromic supercapacitor with transparent nanostructured TiO2/MoO3. Chem Eng J 2022;446:136924. https://doi.org/10.1016/j.cej.2022.136924.

[12]

Chen X, Lin H, Deng J, Zhang Y, Sun X, Chen P, Fang X, Zhang Z, Guan G, Peng H. Electrochromic fiber-shaped supercapacitors. Adv Mater 2014;26(48): 8126-32. https://doi.org/10.1002/adma.201403243.

[13]

Li J, Li J, Li H, Wang C, Sheng M, Zhang L, Fu S. Bistable elastic electrochromic ionic gels for energy-saving displays. ACS Appl Mater Interfaces 2021;13(23): 27200-8. https://doi.org/10.1021/acsami.1c05768.

[14]

Kumar A, Williams TL, Martin CA, Figueroa-Navedo AM, Deravi LF. Xanthommatin-based electrochromic displays inspired by nature. ACS Appl Mater Interfaces 2018;10(49): 43177-83. https://doi.org/10.1021/acsami.8b14123.

[15]

Yang P, Sun P, Mai W. Electrochromic energy storage devices. Mater Today 2016;19(7): 394-402. https://doi.org/10.1016/j.mattod.2015.11.007.

[16]

Wang H, Yao CJ, Nie HJ, Yang L, Mei S, Zhang Q. Recent progress in integrated functional electrochromic energy storage devices. J Mater Chem C 2020;8(44): 15507-25. https://doi.org/10.1039/d0tc03934a.

[17]

Cai G, Wang J, Lee PS. Next-generation multifunctional electrochromic devices. Acc Chem Res 2016;49(8): 1469-76. https://doi.org/10.1021/acs.accounts.6b00183.

[18]

Yang G, Zhang YM, Cai Y, Yang B, Gu C, Zhang SX. Advances in nanomaterials for electrochromic devices. Chem Soc Rev 2020;49(23): 8687-720. https://doi.org/10.1039/d0cs00317d.

[19]

Lin TC, Jheng BJ, Huang WC. Electrochromic properties of the vanadium pentoxide doped with nickel as an ionic storage layer. Energies 2021;14(8): 2065. https://doi.org/10.3390/en14082065.

[20]

Wang Y, Zhong X, Liu X, Lu Z, Su Y, Wang M, Diao X. A fast self-charging and temperature adaptive electrochromic energy storage device. J Mater Chem 2022;10(8): 3944-52. https://doi.org/10.1039/d1ta10726g.

[21]

Laschuk NO, Ebralidze II, Easton EB, Zenkina OV. Systematic design of electrochromic energy storage devices based on metal-organic monolayers. ACS Appl Energy Mater 2021;4(4): 3469-79. https://doi.org/10.1021/acsaem.0c03218.

[22]

Zhang H, Tian Y, Wang S, Feng J, Hang C, Wang C, Ma J, Hu X, Zheng Z, Dong H. Robust Cu-Au alloy nanowires flexible transparent electrode for asymmetric electrochromic energy storage device. Chem Eng J 2021;426:131438. https://doi.org/10.1016/j.cej.2021.131438.

[23]

Huang Q, Wang J, Gong H, Zhang Q, Wang M, Wang W, Nshimiyimana JP, Diao X. A rechargeable electrochromic energy storage device enabling effective energy recovery. J Mater Chem 2021;9(10): 6451-9. https://doi.org/10.1039/d0ta11234h.

[24]

Zhang H, Liu S, Xu T, Xie W, Chen G, Liang L, Gao J, Cao H. Aluminum-ion-intercalation nickel oxide thin films for high-performance electrochromic energy storage devices. J Mater Chem C 2021;9(48): 17427-36. https://doi.org/10.1039/d1tc04240h.

[25]

Khan F. Attaining remarkable switching speed of nickel oxide-based electrode for electrochromic energy storage devices. Surface Interfac 2022;29:101792. https://doi.org/10.1016/j.surfin.2022.101792.

[26]

Zhao L, Chen Z, Peng Y, Yang L, Ai J, Zhou J, Miao L. High-performance complementary electrochromic energy storage device based on tungsten trioxide and manganese dioxide films. SMT Trends 2022;32:e00445. https://doi.org/10.1016/j.susmat.2022.e00445.

[27]

Sajitha S, Aparna U, Deb B. Ultra-thin manganese dioxide-encrusted vanadium pentoxide nanowire mats for electrochromic energy storage applications. Adv Mater Interfac 2019;6(21): 1901038. https://doi.org/10.1002/admi.201901038.

[28]

Zhu M, Huang Y, Huang Y, Meng W, Gong Q, Li G, Zhi C. An electrochromic supercapacitor and its hybrid derivatives: quantifiably determining their electrical energy storage by an optical measurement. J Mater Chem 2015;3(42): 21321-7. https://doi.org/10.1039/c5ta06237c.

[29]

Zhang HY, Miao AJ, Jiang M. Fabrication, characterization and electrochemistry of organiceinorganic multilayer films containing polyoxometalate and polyviologen via layer-by-layer self-assembly. Mater Chem Phys 2013;141(1): 4827. https://doi.org/10.1016/j.matchemphys.2013.05.047.

[30]

Banet P, Simonnet-Jégat C, Goubard F, Peralta S, Lalevée J, Gigmes D, Dumur F. Electrochromic behavior of drop-casted thin films combining a semi-conducting polymer mixed with a Keggin-type polyoxometalate. Mater Chem Phys 2018;211:312-20. https://doi.org/10.1016/j.matchemphys.2018.02.046.

[31]

McGregor D, Burton-Pye BP, Mbomekalle IM, Aparicio PA, Romo S, Lopez X, Poblet JM, Francesconi LC. 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory. Inorg Chem 2012;51(16): 9017-28. https://doi.org/10.1021/ic3011713.

[32]

Wang S-M, Hwang J, Kim E. Polyoxometalates as promising materials for electrochromic devices. J Mater Chem C 2019;7(26): 7828-50. https://doi.org/10.1039/c9tc01722d.

[33]

Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 2018;47(6): 2065-129. https://doi.org/10.1039/c7cs00505a.

[34]

Wang SM, Wang Y, Wang T, Han Z, Cho C, Kim E. Charge-balancing redox mediators for high color contrast electrochromism on polyoxometalates. Adv Mater Technol 2020;5(10): 2000326. https://doi.org/10.1002/admt.202000326.

[35]

Xu J, Gu P, Birch DJS, Chen Y. Plasmon-promoted electrochemical oxygen evolution catalysis from gold decorated MnO2 nanosheets under green light. Adv Funct Mater 2018;28(31): 1801573. https://doi.org/10.1002/adfm.201801573.

[36]

Hao Z, Shen Z, Li Y, Wang H, Zheng L, Wang R, Liu G, Zhan S. The role of alkali metal in alpha-MnO2 catalyzed ammonia-selective catalysis. Angew Chem Int Ed Engl 2019;58(19): 6351-6. https://doi.org/10.1002/anie.201901771.

[37]

Qi L, Yan Z, Huo Y, Hai XM, Zhang ZQ. MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag(þ) ions. Biosens Bioelectron 2017;87:566-71. https://doi.org/10.1016/j.bios.2016.08.093.

[38]

Han L, Shao C, Liang B, Liu A. Genetically engineered phage-templated MnO2 nanowires: synthesis and their application in electrochemical glucose biosensor operated at neutral pH condition. ACS Appl Mater Interfaces 2016;8(22): 13768-76. https://doi.org/10.1021/acsami.6b03266.

[39]

Yao S, Wang S, Liu R, Liu X, Fu Z, Wang D, Hao H, Yang Z, Yan Y-M. Delocalizing the d-electrons spin states of Mn site in MnO2 for anion-intercalation energy storage. Nano Energy 2022;99:107391. https://doi.org/10.1016/j.nanoen.2022.107391.

[40]

Guo W, Yu C, Li S, Song X, Yang Y, Qiu B, Zhao C, Huang H, Yang J, Han X, Li D, Qiu J. A phase transformation-resistant electrode enabled by a MnO2-confined effect for enhanced energy storage. Adv Funct Mater 2019;29(27): 1901342. https://doi.org/10.1002/adfm.201901342.

[41]

Xie S, Chen Y, Bi Z, Jia S, Guo X, Gao X, Li X. Energy storage smart window with transparent-to-dark electrochromic behavior and improved pseudocapacitive performance. Chem Eng J 2019;370:1459-66. https://doi.org/10.1016/j.cej.2019.03.242.

[42]

Wang S-M, Liu L, Chen WL, Zhang ZM, Su ZM, Wang EB. A new electrodeposition approach for preparing polyoxometalates-based electrochromic smart windows. J Mater Chem 2013;1(2): 216-20. https://doi.org/10.1039/c2ta00486k.

[43]

Wang SM, Liu L, Chen WL, Su ZM, Wang EB, Li C. Polyoxometalate/TiO2 interfacial layer with the function of accelerating electron transfer and retarding recombination for dye-sensitized solar cells. Ind Eng Chem Res 2013;53(1): 150-6. https://doi.org/10.1021/ie402074c.

[44]

Han S, Park S, Yi SH, Im WB, Chun SE. Effect of potential and current on electrodeposited MnO2 as a pseudocapacitor electrode: surface morphology/chemistry and stability. J Alloys Compd 2020;831:154838. https://doi.org/10.1016/j.jallcom.2020.154838.

[45]

Li X, Ma J, Yang L, He G, Zhang C, Zhang R, He H. Oxygen vacancies induced by transition metal doping in gamma-MnO2 for highly efficient ozone decomposition. Environ Sci Technol 2018;52(21): 12685-96. https://doi.org/10.1021/acs.est.8b04294.

[46]

Gao F, Tang X, Yi H, Chu C, Li N, Li J, Zhao S. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts. Chem Eng J 2017;322:525-37. https://doi.org/10.1016/j.cej.2017.04.006.

[47]

Zhou D, Che B, Lu X. Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials. J Mater Chem C 2017;5(7): 1758-66. https://doi.org/10.1039/c6tc05216a.

[48]

Wang SM, Liu L, Chen WL, Wang EB. High performance visible and near-infrared region electrochromic smart windows based on the different structures of polyoxometalates. Electrochim Acta 2013;113:240-7. https://doi.org/10.1016/j.electacta.2013.09.048.

[49]

Li L, Wu Qy, Guo Yh, Hu Cw. Nanosize and bimodal porous polyoxotungstateeanatase TiO2 composites: preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Microporous Mesoporous Mater 2005;87(1): 1-9. https://doi.org/10.1016/j.micromeso.2005.07.035.

[50]

Mei H, Huang Z, Xu B, Xiao Z, Mei Y, Zhang H, Zhang S, Li D, Kang W, Sun DF. NiSe2/Ni(OH)2 heterojunction composite through epitaxial-like strategy as high-rate battery-type electrode material. Nano-Micro Lett 2020;12(1): 61. https://doi.org/10.1007/s40820-020-0392-8.

[51]

Gangaja B, Nair S, Santhanagopalan D. Surface-engineered Li4Ti5O12 nanostructures for high-power Li-ion batteries. Nano-Micro Lett 2020;12(1): 30. https://doi.org/10.1007/s40820-020-0366-x.

[52]

Ming S, Zhang Y, Lin K, Du Y, Zhao J, Zhang Y. Maroon-green-indigo color switching of thienoisoindigo-based electrochromic copolymers with high optical contrast. J Taiwan Inst Chem Eng 2022;138. https://doi.org/10.1016/j.jtice.2022.104442.

[53]

Chu D, Qu X, Zhang S, Zhang J, Liu Z, Zhou L, Yang Y. Copper complex/polyoxometalate-based tunable multi-color film for energy storage. Asia Pac J Chem Eng 2022:e2779. https://doi.org/10.1002/apj.2779.

[54]

Qu X, Fu Y, Ma C, Yang Y, Shi D, Chu D, Yu X. Bifunctional electrochromic-energy storage materials with enhanced performance obtained by hybridizing TiO2 nanowires with POMs. New J Chem 2020;44(36): 15475-82. https://doi.org/10.1039/d0nj02859b.

[55]

Chu D, Qu X, Zhang S, Zhang J, Yang Y, An W. Polyoxotungstate-based nanocomposite films with multi-color change and high volumetric capacitance toward electrochromic energy-storage applications. New J Chem 2021;45(42): 19977-85. https://doi.org/10.1039/d1nj03939c.

Journal of Materiomics
Pages 269-278
Cite this article:
Wang S-M, Jin Y-H, Wang T, et al. Polyoxometalate-MnO2 film structure with bifunctional electrochromic and energy storage properties. Journal of Materiomics, 2023, 9(2): 269-278. https://doi.org/10.1016/j.jmat.2022.10.007

463

Views

8

Crossref

6

Web of Science

7

Scopus

Altmetrics

Received: 18 October 2022
Accepted: 23 October 2022
Published: 16 November 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return