AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Temperature-insensitive KNN-based ceramics by elevating O-T phase transition temperature and crystal texture

Shuo Gaoa,1Peng Lia,1Jiawei QuaMingze SunaJigong HaoaPeng FuaZhongbin PanbJiwei Zhaic( )Wei Lia( )
School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, China
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China

1 These authors contributed equally to this work.]]>

Show Author Information

Graphical Abstract

Abstract

The inferior temperature stability of piezoelectric response is the main drawback of KNN-based ceramics. Here, the Ba-doped 0.97(K0.48Na0.52)(Nb0.96Sb0.04)O3-0.03Bax(Bi0.5Ag0.5)1-xZrO3 (abbreviated as KNNS-BBAZ) textured ceramics were prepared by the template grain growth (TGG) method. Excellent comprehensive properties (d33=(406 ± 15) pC/N, TC = 274 ℃, strain is 0.17%) were achieved in KNNS-BBAZ textured ceramics with x = 0.2. Meanwhile, its piezoelectric and strain properties also show superior temperature stability (d33 maintained within ±20% change in a wide temperature range from 25 ℃ to 200 ℃ and strain variation was less than 5% in the temperature range from room temperature to 165 ℃). The high O-T phase transition temperature (TO-T is 110 ℃) induced by incorporating Ba ions accounts for the enhanced temperature stability of piezoelectric properties. In addition, the crystal texture always maintains the contribution of piezoelectric anisotropy to the piezoelectric properties during elevated temperature, which significantly improved the temperature stability of piezoelectric properties. This work provides an effective strategy for simultaneously achieving high piezoelectric response and excellent temperature stability in KNN-based ceramics.

References

[1]

Bian L, Qi X, Li K, Yu Y, Liu L, Chang Y, et al. High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices. Adv Funct Mater 2020;30: 2001846.

[2]

Liu Y, Chang Y, Sun E, Li F, Zhang S, Yang B, et al. Significantly enhanced energy-harvesting performance and superior fatigue-resistant behavior in [001]c-textured BaTiO3-based lead-free piezoceramics. ACS Appl Mater Interfaces 2018;10: 31488-97.

[3]

Yang L, Huang H, Xi Z, Zheng L, Xu S, Tian G, Zhai Y, Guo F, Kong L, Wang Y, Lu W, Yuan L, Zhao M, Zheng H, Liu G. Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat Commun 2022;13: 2444.

[4]

Yang S, Li J, Liu Y, Wang M, Qiao L, Gao X, Chang Y, Du H, Xu Z, Zhang S, Li F. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nat Commun 2021;12: 1414.

[5]

Chang Y, Wu J, Yang B, Xie H, Yang S, Sun Y, et al. Large, thermally stabilized and fatigue-resistant piezoelectric strain response in textured relaxor-PbTiO3 ferroelectric ceramics. J Mater Chem C 2021;9: 2008-15.

[6]

Kou Q, Yang B, Sun Y, Yang S, Liu L, Xie H, et al. Tetragonal (Ba, Ca) (Zr, Ti)O3 textured ceramics with enhanced piezoelectric response and superior temperature stability. J. Materiomics 2021;8: 366-74.

[7]

Li R, Sun X, Lv X, Zheng T, Wu J. Manipulating temperature stability in KNN-based ceramics via defect design. Acta Mater 2021;218: 117229.

[8]

Zhang N, Zheng T, Li N, Zhao C, Yin J, Zhang Y, et al. Symmetry of the underlying lattice in (K, Na)NbO3-based relaxor ferroelectrics with large electromechanical response. ACS Appl Mater Interfaces 2021;13: 7461-9.

[9]

Li P, Fu Z, Wang F, Huan Y, Zhou Z, Zhai J, et al. High piezoelectricity and stable output in BaHfO3 and (Bi0.5Na0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics. Acta Mater 2020;199: 542-50.

[10]

Yang W, Wang Y, Li P, Wu S, Wang F, Shen B, Zhai J. Improving electromechanical properties in KNANS-BNZ ceramics by the synergy between phase structure modification and grain orientation. J Mater Chem C 2020;8: 6149-58.

[11]

Zhang M, Shen C, Zhao C, Dai M, Yao F, Wu B, et al. Deciphering the phase transition-induced ultrahigh piezoresponse in (K, Na)NbO3-based piezoceramics. Nat Commun 2022;13: 3434.

[12]

Cen Z, Dong Z, Xu Z, Yao F, Guo L, Li L, Wang X. Improving fatigue properties, temperature stability and piezoelectric properties of KNN-based ceramics via sintering in reducing atmosphere. J Eur Ceram Soc 2021;41: 4462-72.

[13]

Espinosa A, Ramajo L, Marcos F, Macchi C, Somoza A, Castro M. Influence of the BaTiO3 addition to K0.5Na0.5NbO3 lead-free ceramics on the vacancy-like defect structure and dielectric properties. J Eur Ceram Soc 2021;41: 1288-98.

[14]

Difeo M, Ramajo L, Castro M. Influence of CuO addition on dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J. Adv. Dielectr. 2021;11: 2140004.

[15]

On D, Vuong L, Chuong T, Quang D, Tuyen H, Tung V. Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles. J. Adv. Dielectr. 2021;11: 2150014.

[16]

Zeng X, Zhang Q, Shen Z, Zhang H, Wang T, Liu Z. Doping and vacancy engineering in a sandwich-like g-C3N4/NiCo2O4 heterostructure for robust oxygen evolution. Chemnanomat 2022;8: e202200191.

[17]

Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 2015;115: 2559-95.

[18]

Yao W, Zhang J, Zhou C, Liu D, Su W. Giant piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain configurations of (K, Na)(Nb, Sb)O3–BiFeO3–(Bi, Na)ZrO3 ceramics. J Eur Ceram Soc 2020;40: 1223-31.

[19]

Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K, Studer A, Hinterstein M, Wang K, Zhang X, Li L, Li J. Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizingmultiphase coexistence. Natl Sci Rev 2020;7: 355-65.

[20]

Zhou C, Zhang J, Yao W, Liu D, He G. Remarkably strong piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain structure of (K, Na)(Nb, Sb)O3–(Bi, Na)ZrO3–BaZrO3 ceramics. J Alloys Compd 2020;820: 153441.

[21]

Qin Y, Zhang J, Yao W, Lu C, Zhang S. Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl Mater Interfaces 2016;8: 7257-65.

[22]

Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J Am Chem Soc 2019;141: 13987-94.

[23]

Kim D, Eum J, Go S, Shin H, Kim H, Chae S, et al. Remarkable piezoelectric performance and good thermal stability of <001>-textured 0.96(K0.5Na0.5)(NbnullSbnull)O3-0.04SrZrO3 lead-free piezoelectric ceramics. J Alloys Compd 2021;882: 160662.

[24]

GoS, KimH, KimD, EumJ, Chae S, KimE, NahmS. Improvement of piezoelectricity of (Na, K)Nb-based lead-free piezoceramics using [001]-texturing for piezoelectric energy harvesters and actuators. J Eur Ceram Soc 2022;42: 6478-92.

[25]

Li P, Chen X, Wang F, Shen B, Zhai J, Zhang S, et al. Microscopic insight into electric fatigue resistance and thermally stable piezoelectric properties of (K, Na)NbO3-based ceramics. ACS Appl Mater Interfaces 2018;10: 28772-9.

[26]

Saito Y, Takao H, Tani T. Lead-free piezoceramics. Nature 2004;432: 84-7.

[27]

Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3 -based lead-free ceramics. Adv. Mater. 2018;30: 1705171.

[28]

Shi C, Ma J, Wu J, Chen K, Wu B. (Bi0.5Na0.5)ZrO3 modified KNN-based ceramics: enhanced electrical properties and temperature insensitivity. Ceram Int 2020;46: 2798-804.

[29]

Zhou C, Zhang J, Liu D, Zhang Z. Novel 1-3 (K, Na)NbO3-based ceramic/epoxy composites with large thickness-mode electromechanical coupling coefficient and good temperature stability. Ceram Int 2021;47: 4643-7.

[30]

Cen Z, Huan Y, Feng W, Yu Y, Zhao P, Chen L, Zhu C, Li L, Wang X. A high temperature stable piezoelectric strain of KNN-based ceramics. J Mater Chem 2018;6: 19967-73.

[31]

Lv X, Wu J, Zhang X. A new concept to enhance piezoelectricity and temperature stability in KNN ceramics. Chem. Eng. J. 2020;402: 126215.

[32]

Yu Y, Shi X, Xue H, Zhang N, Zheng T, Huang H, Zhu J, Wu J. Electric-fieldinsensitive temperature stability of strain in KNN multilayer composite ceramics. ACS Appl Mater Interfaces 2022;14: 26949-57.

[33]

Xing J, Chen H, Jiang L, Zhao C, Tan Z, Huang Y, et al. High performance BiFe0.9Co0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting. Nano Energy 2021;84: 105900.

[34]

Song A, Liu Y, Feng T, Li H, Zhang Y, Wang X, et al. Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics via layered distribution of dopants. Adv Funct Mater 2022;32: 2204385.

[35]

Liu H, Liu Y, Song A, Li Q, Yang Y, Yao F, Wang K, Gong W, Zhang B, Li J, Na K. NbO3-based lead-free piezoceramics: one more step to boost applications. Natl Sci Rev 2022;9: nwac101.

[36]

Cheng Y, Xing J, Li X, Xie L, Xie Y, Tan Z, Zhu J. Meticulously tailoring phase boundary in KNN-based ceramics to enhance piezoelectricity and temperature stability. J Am Ceram Soc 2022;105: 5213-21.

[37]

Zheng T, Yu Y, Lei H, Li F, Zhang S, Zhu J, Wu J. Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability. Adv. Mater. 2022;34: 2109175.

[38]

Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, Zhang X, Li L, Li J. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ Sci 2018;11: 3531-9.

[39]

Wang K, Yao F, Jo W, Gobeljic D, Shvartsman V, Lupascu D, et al. Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 2013;23: 4079-86.

[40]

Zhang M, Wang K, Zhou J, Zhou J, Chu X, Lv X, et al. Thermally stable piezoelectric properties of (K, Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater 2017;122: 344-51.

[41]

Wada S, Kakemoto H, Tsurumi T. Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering. Mater Trans 2004;45: 178-87.

[42]

Liu H, Koruza J, Veber P, Rytz D, Maglione M, Rödel J. Orientation-dependent electromechanical properties of Mn-doped (Li, Na, K)(Nb, Ta)O3 single crystals. Appl Phys Lett 2016;109: 152902.

[43]

Zhang S, Li F. J. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. Appl. Phys. 2012;111: 031301.

[44]

Jia T, Cheng Z, Zhao H, Kimura H. Domain switching in single-phase multiferroics. Appl Phys Rev 2018;5: 021102.

[45]

Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, WuJ, Wang K, Li J, Gu Y, Zhu J, Pennycook S. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 2017;10: 528-37.

[46]

Zhang J, Zhou C. Study of domain configurations in (Bi, Na)ZrO3-modified (K, Na)(Nb, Sb)O3 piezoelectric ceramics by acid-etching at different temperatures. Sci Rep 2020;10: 18526.

[47]

Tutuncu G, Li B, Bowman K, Jones J. Domain wall motion and electromechanical strain in lead-free piezoelectrics: insight from the model system (1−x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields. J Appl Phys 2014;115: 144104.

[48]

Zheng L, Li S, Sang S, Wang J, Huo X, Wang R, et al. Complete set of material constants of single domain (K, Na)(Nb, Ta)O3 single crystal and their orientation dependence. Appl Phys Lett 2014;105: 212902.

[49]

Liu Q, Li J, Zhao L, Zhang Y, Gao J, Sun W, Wang K, Li L. Niobate-based lead-free piezoceramics: diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficient. J Mater Chem C 2018;6: 1116-25.

Journal of Materiomics
Pages 261-268
Cite this article:
Gao S, Li P, Qu J, et al. Temperature-insensitive KNN-based ceramics by elevating O-T phase transition temperature and crystal texture. Journal of Materiomics, 2023, 9(2): 261-268. https://doi.org/10.1016/j.jmat.2022.10.008

356

Views

8

Crossref

11

Web of Science

11

Scopus

Altmetrics

Received: 14 September 2022
Revised: 18 October 2022
Accepted: 27 October 2022
Published: 15 November 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return