AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Direct measurement of electrocaloric effect in P(VDF-TrFE-CFE) film using infrared imaging

Ashwath Aravindhana,bPierre LheritieraAlvar Torellóa,bUros PrahaYouri Nouchokgwea,bAsmaa El MoulaXavier ChevaliercFabrice Domingues Dos SantoscEmmanuel Defaya( )Veronika Kovacovaa( )
Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422, Belvaux, Luxembourg
University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, L-4365, Luxembourg
Arkema – Piezotech CRRA, Rue Henri Moissan, 69493, Pierre Benite Cedex, France

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) P(VDF-TrFE-CFE) is a relaxor ferroelectric polymer, which exhibits a temperature-independent electrocaloric effect at room temperature. In this work, the electrocaloric effect in P(VDF-TrFE-CFE) film was directly analysed using infrared imaging. P(VDF-TrFE-CFE) 64.8%/27.4%/7.8% (in mole) film of (15 ± 1) μm thickness was deposited on polyethylene naphthalate substrate. Direct ECE of P(VDF-TrFE-CFE) film was measured from 15 to 35 ℃ at different electric fields. A maximum adiabatic temperature change (ΔTad) of 3.58 K was measured during the cooling cycle at a field of 100 V/μm at 30 ℃. Finite element analysis of temperature dissipation through the sample estimated that the actual temperature change within P(VDF-TrFE-CFE) film was 4.3 K. Despite the thermal mass of the substrate, a substantial ECE was observed in P(VDF-TrFE-CFE) films. This electrocaloric terpolymer composition could be of interest for electrocaloric cooling applications.

References

[1]

Isaac M, van Vuuren DP. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Pol 2009;37: 507-21. https://doi.org/10.1016/j.enpol.2008.09.051.

[2]

Liu Y, Scott JF, Dkhil B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl Phys Rev 2016;3: 031102. https://doi.org/10.1063/1.4958327.

[3]

Lu SG, Rožič B, Zhang QM, Kutnjak Z, Neese B. Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Appl Phys Lett 2011;98: 2009. https://doi.org/10.1063/1.3569953.-12.

[4]

Scott JF. Electrocaloric materials. Annu Rev Mater Res 2011;41: 229-40. https://doi.org/10.1146/annurev-matsci-062910-100341.

[5]

Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND. Giant electrocaloric effect in thin-film PbZr0.95Ti 0.05O3. Science 2006;311: 1270-1. https://doi.org/10.1126/science.1123811.

[6]

Mischenko AS, Zhang Q, Whatmore RW, Scott JF, Mathur ND. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 Pb Mg1/3Nb2/3O3-0.1 PbTiO3 near room temperature. Appl Phys Lett 2006;89. https://doi.org/10.1063/1.2405889.0-4.

[7]

Neese B, Chu B, Lu SG, Wang Y, Furman E, Zhang QM. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 2008;321: 821-3. https://doi.org/10.1126/science.1159655.

[8]

Nouchokgwe Y, Lheritier P, Hong CH, Torelló A, Faye R, Jo W, et al. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat Commun 2021;12: 1-7. https://doi.org/10.1038/s41467-021-23354-y.

[9]

Nair B, Usui T, Crossley S, Kurdi S, Guzmán-Verri GG, Moya X, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 2019;575: 468-72. https://doi.org/10.1038/s41586-019-1634-0.

[10]

Moya X, Kar-Narayan S, Mathur ND. Caloric materials near ferroic phase transitions. Nat Mater 2014;13: 439-50. https://doi.org/10.1038/nmat3951.

[11]

Torelló A, Lheritier P, Usui T, Nouchokgwe Y, Gérard M, Bouton O, et al. Giant temperature span in electrocaloric regenerator. Science 2020;370: 125-9. https://doi.org/10.1126/science.abb8045.

[12]

Scott JF. Electrocaloric materials. Annu Rev Mater Res 2011;41(1): 229-40. https://doi.org/10.1146/annurev-matsci-062910-100341.

[13]

Gu H, Qian X, Li X, Craven B, Zhu W, Cheng A, et al. A chip scale electrocaloric effect based cooling device. Appl Phys Lett 2013;102: 2-6. https://doi.org/10.1063/1.4799283.

[14]

Meng Y, Zhang Z, Wu H, Wu R, Wu J, Wang H, et al. A cascade electrocaloric cooling device for large temperature lift. Nat Energy 2020;5: 996-1002. https://doi.org/10.1038/s41560-020-00715-3.

[15]

Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju YS, et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science 2017;357: 1130-4. https://doi.org/10.1126/science.aan5980.

[16]

Lu SG, Zhang Q. Electrocaloric materials for solid-state refrigeration. Adv Mater 2009;21: 1983. https://doi.org/10.1002/adma.200802902.-7.

[17]

Lu SG, Rožič B, Zhang QM, Kutnjak Z, Pirc R, Lin M, et al. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl Phys Lett 2010;97: 1-4. https://doi.org/10.1063/1.3514255.

[18]

Bokov AA, Ye ZG. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41: 31-52. https://doi.org/10.1007/s10853-005-5915-7.

[19]

Sebald G, Pruvost S, Seveyrat L, Lebrun L, Guyomar D, Guiffard B. Electrocaloric properties of high dielectric constant ferroelectric ceramics. J Eur Ceram Soc 2007;27: 4021-4. https://doi.org/10.1016/j.jeurceramsoc.2007.02.088.

[20]

Rožič B, Malič B, Uršič H, Holc J, Kosec M, Neese B, et al. Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics 2010;405: 26-31. https://doi.org/10.1080/00150193.2010.482884.

[21]

Kar-Narayan S, Crossley S, Moya X, Kovacova V, Abergel J, Bontempi A, et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl Phys Lett 2013;102: 032903. https://doi.org/10.1063/1.4788924.

[22]

Jia Y, Sungtaek Ju Y. Direct characterization of the electrocaloric effects in thin films supported on substrates. Appl Phys Lett 2013;103. https://doi.org/10.1063/1.4816333.

[23]

Pandya S, Wilbur JD, Bhatia B, Damodaran AR, Monachon C, Dasgupta A, et al. Direct measurement of pyroelectric and electrocaloric effects in thin films. Phys Rev Appl 2017;7: 034025. https://doi.org/10.1103/PhysRevApplied.7.034025.

[24]

Guo D, Gao J, Yu Y-J, Santhanam S, Feder G K, McGaughey A JH, et al. Electrocaloric characterization of a poly (vinylidene terpolymer by infrared imaging. Appl Phys Lett 2014;105: 1-6.

[25]

Lhéritier P, Nouchokgwe Y, Kovacova V, Hong CH, Torelló À, Jo W, et al. Measuring lead scandium tantalate phase transition entropy by infrared camera. J Eur Ceram Soc 2021;41: 7000. https://doi.org/10.1016/j.jeurceramsoc.2021.07.002.-4.

[26]

Li X, Qian XS, Lu SG, Cheng J, Fang Z, Zhang QM. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl Phys Lett 2011;99: 2011. https://doi.org/10.1063/1.3624533.-4.

[27]

Sebald G, Seveyrat L, Capsal JF, Cottinet PJ, Guyomar D. Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl Phys Lett 2012;101: 022907. https://doi.org/10.1063/1.4734924.

[28]
Kutnjak Z, Rožič B. Indirect and Direct Measurements of the Electrocaloric Effect, 34; 2014. p. 147-82. https://doi.org/10.1007/978-3-642-40264-7_7. Engineering Materials, Springer, Berlin, 2022.
[29]
Rothon R. Fillers for polymer applications, polymers and polymeric composites: a reference series. first ed., vol. 489. Berlin: Springer; 2017.
[30]

Basso V, Russo F, Gerard JF, Pruvost S. Direct measurement of the electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer films. Appl Phys Lett 2013;103. https://doi.org/10.1063/1.4830369.

[31]

Lu SG, Cai ZH, Ouyang YX, Deng YM, Zhang SJ, Zhang QM. Electrical field dependence of electrocaloric effect in relaxor ferroelectrics. Ceram Int 2015;41:S15-8. https://doi.org/10.1016/j.ceramint.2015.03.206.

Journal of Materiomics
Pages 256-260
Cite this article:
Aravindhan A, Lheritier P, Torelló A, et al. Direct measurement of electrocaloric effect in P(VDF-TrFE-CFE) film using infrared imaging. Journal of Materiomics, 2023, 9(2): 256-260. https://doi.org/10.1016/j.jmat.2022.10.009

525

Views

7

Crossref

8

Web of Science

9

Scopus

Altmetrics

Received: 18 June 2022
Revised: 08 September 2022
Accepted: 23 October 2022
Published: 18 November 2022
© 2022 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return