Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) P(VDF-TrFE-CFE) is a relaxor ferroelectric polymer, which exhibits a temperature-independent electrocaloric effect at room temperature. In this work, the electrocaloric effect in P(VDF-TrFE-CFE) film was directly analysed using infrared imaging. P(VDF-TrFE-CFE) 64.8%/27.4%/7.8% (in mole) film of (15 ± 1) μm thickness was deposited on polyethylene naphthalate substrate. Direct ECE of P(VDF-TrFE-CFE) film was measured from 15 to 35 ℃ at different electric fields. A maximum adiabatic temperature change (ΔTad) of 3.58 K was measured during the cooling cycle at a field of 100 V/μm at 30 ℃. Finite element analysis of temperature dissipation through the sample estimated that the actual temperature change within P(VDF-TrFE-CFE) film was 4.3 K. Despite the thermal mass of the substrate, a substantial ECE was observed in P(VDF-TrFE-CFE) films. This electrocaloric terpolymer composition could be of interest for electrocaloric cooling applications.
Isaac M, van Vuuren DP. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Pol 2009;37: 507-21. https://doi.org/10.1016/j.enpol.2008.09.051.
Liu Y, Scott JF, Dkhil B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl Phys Rev 2016;3: 031102. https://doi.org/10.1063/1.4958327.
Lu SG, Rožič B, Zhang QM, Kutnjak Z, Neese B. Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Appl Phys Lett 2011;98: 2009. https://doi.org/10.1063/1.3569953.-12.
Scott JF. Electrocaloric materials. Annu Rev Mater Res 2011;41: 229-40. https://doi.org/10.1146/annurev-matsci-062910-100341.
Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND. Giant electrocaloric effect in thin-film PbZr0.95Ti 0.05O3. Science 2006;311: 1270-1. https://doi.org/10.1126/science.1123811.
Mischenko AS, Zhang Q, Whatmore RW, Scott JF, Mathur ND. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 Pb Mg1/3Nb2/3O3-0.1 PbTiO3 near room temperature. Appl Phys Lett 2006;89. https://doi.org/10.1063/1.2405889.0-4.
Neese B, Chu B, Lu SG, Wang Y, Furman E, Zhang QM. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 2008;321: 821-3. https://doi.org/10.1126/science.1159655.
Nouchokgwe Y, Lheritier P, Hong CH, Torelló A, Faye R, Jo W, et al. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat Commun 2021;12: 1-7. https://doi.org/10.1038/s41467-021-23354-y.
Nair B, Usui T, Crossley S, Kurdi S, Guzmán-Verri GG, Moya X, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 2019;575: 468-72. https://doi.org/10.1038/s41586-019-1634-0.
Moya X, Kar-Narayan S, Mathur ND. Caloric materials near ferroic phase transitions. Nat Mater 2014;13: 439-50. https://doi.org/10.1038/nmat3951.
Torelló A, Lheritier P, Usui T, Nouchokgwe Y, Gérard M, Bouton O, et al. Giant temperature span in electrocaloric regenerator. Science 2020;370: 125-9. https://doi.org/10.1126/science.abb8045.
Scott JF. Electrocaloric materials. Annu Rev Mater Res 2011;41(1): 229-40. https://doi.org/10.1146/annurev-matsci-062910-100341.
Gu H, Qian X, Li X, Craven B, Zhu W, Cheng A, et al. A chip scale electrocaloric effect based cooling device. Appl Phys Lett 2013;102: 2-6. https://doi.org/10.1063/1.4799283.
Meng Y, Zhang Z, Wu H, Wu R, Wu J, Wang H, et al. A cascade electrocaloric cooling device for large temperature lift. Nat Energy 2020;5: 996-1002. https://doi.org/10.1038/s41560-020-00715-3.
Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju YS, et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science 2017;357: 1130-4. https://doi.org/10.1126/science.aan5980.
Lu SG, Zhang Q. Electrocaloric materials for solid-state refrigeration. Adv Mater 2009;21: 1983. https://doi.org/10.1002/adma.200802902.-7.
Lu SG, Rožič B, Zhang QM, Kutnjak Z, Pirc R, Lin M, et al. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl Phys Lett 2010;97: 1-4. https://doi.org/10.1063/1.3514255.
Bokov AA, Ye ZG. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41: 31-52. https://doi.org/10.1007/s10853-005-5915-7.
Sebald G, Pruvost S, Seveyrat L, Lebrun L, Guyomar D, Guiffard B. Electrocaloric properties of high dielectric constant ferroelectric ceramics. J Eur Ceram Soc 2007;27: 4021-4. https://doi.org/10.1016/j.jeurceramsoc.2007.02.088.
Rožič B, Malič B, Uršič H, Holc J, Kosec M, Neese B, et al. Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics 2010;405: 26-31. https://doi.org/10.1080/00150193.2010.482884.
Kar-Narayan S, Crossley S, Moya X, Kovacova V, Abergel J, Bontempi A, et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl Phys Lett 2013;102: 032903. https://doi.org/10.1063/1.4788924.
Jia Y, Sungtaek Ju Y. Direct characterization of the electrocaloric effects in thin films supported on substrates. Appl Phys Lett 2013;103. https://doi.org/10.1063/1.4816333.
Pandya S, Wilbur JD, Bhatia B, Damodaran AR, Monachon C, Dasgupta A, et al. Direct measurement of pyroelectric and electrocaloric effects in thin films. Phys Rev Appl 2017;7: 034025. https://doi.org/10.1103/PhysRevApplied.7.034025.
Guo D, Gao J, Yu Y-J, Santhanam S, Feder G K, McGaughey A JH, et al. Electrocaloric characterization of a poly (vinylidene terpolymer by infrared imaging. Appl Phys Lett 2014;105: 1-6.
Lhéritier P, Nouchokgwe Y, Kovacova V, Hong CH, Torelló À, Jo W, et al. Measuring lead scandium tantalate phase transition entropy by infrared camera. J Eur Ceram Soc 2021;41: 7000. https://doi.org/10.1016/j.jeurceramsoc.2021.07.002.-4.
Li X, Qian XS, Lu SG, Cheng J, Fang Z, Zhang QM. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl Phys Lett 2011;99: 2011. https://doi.org/10.1063/1.3624533.-4.
Sebald G, Seveyrat L, Capsal JF, Cottinet PJ, Guyomar D. Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl Phys Lett 2012;101: 022907. https://doi.org/10.1063/1.4734924.
Basso V, Russo F, Gerard JF, Pruvost S. Direct measurement of the electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer films. Appl Phys Lett 2013;103. https://doi.org/10.1063/1.4830369.
Lu SG, Cai ZH, Ouyang YX, Deng YM, Zhang SJ, Zhang QM. Electrical field dependence of electrocaloric effect in relaxor ferroelectrics. Ceram Int 2015;41:S15-8. https://doi.org/10.1016/j.ceramint.2015.03.206.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).