AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Sintering behavior, phase composition, microstructure, and dielectric characteristics of garnet-type Ca3Fe2Ge3O12 microwave ceramics

Guoqiang He,,1Yanjun Liu,1Huanfu Zhou( )Xiuli Chen
Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China

Peer review under responsibility of The Chinese Ceramic Society.

1 These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

This paper describes the solid-state production of a unique yellowish-grey microwave dielectric ceramic, Ca3Fe2Ge3O12 (CFG). Rietveld refinement demonstrated that CFG corresponds to a cubic system (space group 230: Ia 3 d). The relative density of the ceramic initially increased and then decreased with the sintering temperature, reaching a maximum of 96.92% at 1330 ℃. According to scanning electron microscopy and energy-dispersive spectroscopy results, the CFG ceramic grains are spherical and consistent in size; furthermore, they have distinct grain boundaries and a uniform distribution of the four constituent elements. The CFG ceramic has a superior crystal structure and a high crystallinity, according to transmission electron microscopy. Raman spectroscopy revealed that the Q×f value of the ceramic and the full width at half maximum of the Raman peak are negatively correlated. The ceramic possesses the best overall dielectric characteristics after sintering at 1330 ℃ for 4 h: εr = 10.31, Q×f = 82636 GHz, and τf = −45.66 × 10−6−1, showing that it is a promising candidate for use in mobile devices.

References

[1]

Qin J, Liu Z, Ma M, Liu F, Li Y. Interfaces, structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q × f value via machine learning. ACS Appl Mater Interfaces 2021;13:17817–26.

[2]

Wu FF, Zhou D, Du C, Jin BB, Li C, Qi ZM, Sun S, Zhou T, Li Q, Zhang XQ. Design of a sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1-xBix)NbO4 (x=0-0.15) microwave dielectric ceramics. ACS Appl Mater Interfaces 2022;14:7030–8.

[3]

Li L, Liu CH, Zhu JY, Chen XM. B2O3-modified fused silica microwave dielectric materials with ultra-low dielectric constant. J Eur Ceram Soc 2015;35:1799–805.

[4]

Wang D, Siame B, Zhang S, Wang G. Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas. J Eur Ceram Soc 2020;40:40294–4034.

[5]

Wu F, Zhou D, Du C, Sun SK, Pang LX, Jin BB, Qi ZM. Temperature stable Sm(Nb1-xVx)O4 (0.0≤x≤0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J Mater Chem C 2021;9:9962–71.

[6]

Pan HL, Mao YX, Yang YK, Zhang YW, Wu HT. Crystal structure, Raman spectra, infrared spectra and microwave dielectric properties of Li2Mg3Ti1-x(Mg1/3Ta2/3)xO6 (0 ≤ x ≤0.2) solid solution ceramics. Mater Res Bull 2018;105:296–305.

[7]

Hao SZ, Zhou D, Hussain F, Liu WF, Su JZ, Wang DW, Wang QP, Qi ZM, Singh C, Trukhanov S. Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x)Bi2/3MoO4 (x=0.2 similar to 0.8) ceramics with low sintering temperatures. J Eur Ceram Soc 2020;40:3569–76.

[8]

Guo HH, Zhou D, Du C, Wang PJ, Liu WF, Pang LX, Wang QP, Su JZ, Singh C. Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. J Mater Chem C 2020;8:4690–700.

[9]

Joseph N, Varghese J, Teirikangas M, Vahera T. Interfaces, ultra low temperature cofired ceramic substrates with low residual carbon for the next generation microwave applications. ACS Appl Mater Interfaces 2019;11:23798–807.

[10]

He G, Wang H, Li Q, Wu Y, Chen X, Liang J, Zhou H. A microwave dielectric ceramic with ultra-low dielectric constant prepared by reaction sintering method. J Electron Mater 2022;51:5026–31.

[11]

Wang H, Shixuan LI, Wang K, Chen X, Zhou H. Sintering behaviour and microwave dielectric properties of MgO-2BO3-xwt%BaCu(B2O5)-ywt%H3BO3 ceramics. J. Adv. Ceram. 2021;10:1282–90.

[12]

Bing Q, Xiao Chen, Xiang M. Srn+1TinO3n+1 (n=1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J Am Ceram Soc 2017;100:496–500.

[13]

Zhenxiao Bian, Wenjie Zhang, Qitu Haikui, Chengfa Xiaochi. Cation distribution of high-performance Mn-substituted ZnGa2O4 microwave dielectric ceramics. Ceram Int 2018;44:10028–34.

[14]

Pei C, Tan J, Yang LI, Yao G, Jia Y, Ren Z, Liu P, Zhang H. Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1-xO6 ceramics. J. Adv. Ceram. 2020;9:588–94.

[15]

Zhang Q, Xu L, Tang X, Zhang H, Zhou Y, Jing Y, Li Y, Liu Y, Su H. Structural characteristics and microwave dielectric properties of Zn1-xBixVxW1-xO4-based ceramics for LTCC applications. J Eur Ceram Soc 2022;42:5691–7.

[16]

Ren J, Bi K, Fu X, Peng Z. Novel Al2Mo3O12-based temperature-stable microwave dielectric ceramics for LTCC applications. J Mater Chem C 2018;6:11465–70.

[17]

Hao SZ, Zhou D, Pang LX, Dang MZ, Sun SK, Zhou T, Trukhanov S, Trukhanov A, Sombra ASB, Li Q, Zhang XQ, Xia S, Darwish MA. Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in the Na2O–Bi2O3–MoO3 ternary system: a comprehensive study. J Mater Chem C 2022;10:2008–16.

[18]

He G, He Y, Liu Y, Zhang H, Wu Y, Liang J, Zhou H. Sintering behaviour, phase composition, microstructure, and dielectric properties of BaSm2O4 microwave ceramics. Ceram Int 2023;49:548–57.

[19]

Almessiere MA, Trukhanov AV, Slimani Y, You KY, Trukhanov SV, Trukhanova EL, Esa F, Sadaqati A, Chaudhary K, Zdorovets M, Baykal A. Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 2019;9:202.

[20]

Kozlovskiy AL, Zdorovets MV. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater Chem Phys 2021;263:124444.

[21]

He G, Liu Y, He Y, Wu Y, Liang J, Zhou H. Sintering behavior, phase composition, microstructure and dielectric properties of SrSm2O4 microwave ceramics. J Alloys Compd 2022;924:166475.

[22]

Tang Y, Li H, Li J, Xiang H, Fang L. Microwave dielectric properties of Li3A3-Te2O12 (A = Y, Yb) garnets for low temperature cofired ceramic technologies. J Eur Ceram Soc 2022;42:2248–53.

[23]

Tang Y, Li H, Li J, Fang W, Yang Y, Zhang Z, Fang L. Relationship between Rattling Mg2+ ions and anomalous microwave dielectric behavior in Ca3-xMg1+xLiV3O12 ceramics with garnet structure. J Eur Ceram Soc 2021;41:7697–702.

[24]

Zhou H, Lu C, Li S, Deng J, Wang K. Phase composition, sintering behavior and mirowave dielectric properties of novel high Q Ca3Al2(GeO4)3 ceramic. Mater Lett 2020;263:127240.

[25]

Madhuri R, Ganesanpotti S. Crystal structure, phonon modes, and bond characteristics of AgPb2B2V3O12 (B = Mg, Zn) microwave ceramics. J Am Ceram Soc 2020;103:3157–67.

[26]

Zhou H, Sun W, Liu X, Wang K, Ruan H, Chen X. Microwave dielectric properties of LiCa3ZnV3O12 and NaCa2Mg2V3O12 ceramics prepared by reaction-sintering. Ceram Int 2019;45:2629–34.

[27]

Kosyl KM, Paszkowicz W, Minikayev R, Berkowski M, Czech M, Reszka A, Kilanski L. Thermal expansion of calcium cobalt vanadate garnet, Ca2.5Co2V3O12. J Alloys Compd 2019;779:863–9.

[28]

Li C, Hou J, Ye Z, Muhammad R, Li A, Ma M, Wu G, Song K, Zhou T, Mao M, Liu B, Bafrooei HB, Taheri-nassaj E, Luo S, Shi F, Sun S, Wang D. Lattice occupying sites and microwave dielectric properties of Mg2+-Si4+ co-doped MgxY3-xAl5-xSixO12 garnet typed ceramics. J Mater Sci Mater Electron 2022;33:2116–24.

[29]

Jiang Y, Liu H, Muhammad R, Luo X, Song K, Mao M, Sun S, Bafrooei HB, Taheri-Nassaj E, Iqbal Y, Sun R, Wang D. Broadband and high-efficiency of garnet-typed ceramic dielectric resonator antenna for 5G/6G communication application. Ceram Int 2022;48:26922–7.

[30]

Turchenko VA, Trukhanov SV, Kostishin VG, Damay F, Porcher F, Klygach DS, Vakhitov MG, Lyakhov D, Michels D, Bozzo B, Fina I, Almessiere MA, Slimani Y, Baykal A, Zhou D, Trukhanov AV. Features of structure, magnetic state and electrodynamic performance of SrFe12-xInxO19. Sci Rep 2021;11:18342.

[31]

Turchenko VA, Trukhanov SV, Kostishin VGe, Damay F, Porcher F, Klygach DS, Vakhitov MGe, Matzui LYe, Yakovenko OS, Bozzo B, Fina I, Almessiere MA, Slimani Y, Baykal A, Zhou D, Trukhanov AV. Impact of In3+ cations on structure and electromagnetic state of M−type hexaferrites. J Energy Chem 2022;69:667–76.

[32]

Lee J, Ohba N, Asahi R. Design rules for high oxygen-ion conductivity in garnet-type oxides. Chem Mater 2020;32:1358–70.

[33]

Rau JG, McClarty PA, Moessner R. Pseudo-goldstone gaps and order-by-quantum disorder in frustrated magnets. Phys Rev Lett 2018;121:237201.

[34]

Trukhanov AV, Turchenko VO, Bobrikov IA, Trukhanov SV, Kazakevich IS, Balagurov AM. Crystal structure and magnetic properties of the BaFe12–xAlxO19 (x=0.1–1.2) solid solutions. J Magn Magn Mater 2015;393:253–9.

[35]

Zdorovets MV, Kozlovskiy AL, Shlimas DI, Borgekov DB. Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci Mater Electron 2021;32:16694–705.

[36]

Trukhanov SV, Trukhanov AV, Turchenko VA, Trukhanov AV, Trukhanova EL, Tishkevich DI, Ivanov VM, Zubar TI, Salem M, Kostishyn VG, Panina LV, Vinnik DA, Gudkova SA. Polarization origin and iron positions in indium doped barium hexaferrites. Ceram Int 2018;44:290–300.

[37]

Shlimas DI, Kozlovskiy AL, Zdorovets MV. Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of LixTixO3 ceramics with different contents of the X component. J Mater Sci: Mater. 2021;32:7410–22.

[38]

He G, Ma X, Liu Y, He Y, Xiao Y, Qu X, Deng S, Liu K, Wang X, Zhou S, Li Q, Dai Z, Wu Y, Chen X, Zhou H. Sintering characteristics and microwave dielectric properties of ultralow-loss SrY2O4 ceramics. Ceram Int 2022;48:21340–5.

[39]

Tajima S, Ohba N, Suzumura A, Kajita S. Synthesis and ion-transport properties of EuKGe2O6, Ca3Fe2Ge3O12, and BaCu2Ge2O7Type oxide-ion conductors. Inorg Chem 2021;60:17019–32.

[40]

Lee J, Ohba N, Asahi R. Oxygen conduction mechanism in Ca3Fe2Ge3O12 garnet-type oxide. Sci Rep 2019;9:2593.

[41]

Riebling EF. Growth of Ca3Fe2Ge3O12 and Ca3Fe(Al, Cr)Ge3O12 garnets in molten bismuth germanate glasses. Mater Res Bull 1975;10:1143–50.

[42]

Zhou MK, Tang B, Xiong Z, Zhang X, Zhang SR. Effects of MgO doping on microwave dielectric properties of yttrium aluminum garnet ceramics. J Alloys Compd 2021;858:158139.

[43]

Trukhanov SV, Lobanovski LS, Bushinsky MV, Fedotova VV, Troyanchuk IO, Trukhanov AV, Ryzhov VA, Szymczak H, Szymczak R, Baran M. Study of A-site ordered PrBaMn2O6−δ manganite properties depending on the treatment conditions. J Phys Condens Matter 2005;17:6495–506.

[44]

Kozlovskiy AL, Alina A, Zdorovets MV. Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J Mater Sci: Mater. 2021;32:3863–77.

[45]

Wu FF, Zhou D, Du C, Jin BB, Li C, Qi ZM, Sun S, Zhou T, Li Q, Zhang XQ. Design of a sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1-xBix)NbO4 (x = 0-0.15) microwave dielectric ceramics. ACS Appl Mater Interfaces 2022;14:7030–8.

[46]

Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993;73:348–66.

[47]

Tang Y, Zhang Z, Li J, Xu M, Zhai Y, Duan L, Su C, Liu L, Sun Y, Fang L. A3Y2Ge3O12 (A = Ca, Mg): two novel microwave dielectric ceramics with contrasting τf and Q × f. J Eur Ceram Soc 2020;40:3989–95.

[48]

Maschio L, Demichelis R, Orlando R, Pierre MDL, Mahmoud A, Dovesi R. The Raman spectrum of grossular garnet: a quantum mechanical simulation of wavenumbers and intensities. J Raman Spectrosc 2014;45:710–5.

[49]

Gouadec G, Makaoui K, Perrière L, Colomban P, Mazerolles L. Polarized micro-Raman study of Al2O3-based directionally solidified oxide eutectics containing GdAlO3 perovskite, Er3Al5O12 garnet and cubic ZrO2. J Raman Spectrosc 2010;41:969–77.

[50]

Zhang Q, Xu L, Tang X, Huang F, Wu X, Li Y, Jing Y, Han ZK, Su H. Electronic structure, Raman spectra, and microwave dielectric properties of Co-substituted ZnWO4 ceramics. J Alloys Compd 2021;874:159928.

[51]

Meyer A, Perger WF, Demichelis R, Civalleri B, Dovesi R. Magnetic interactions in Ca3Fe2Ge3O12 and Ca3Cr2Ge3O12 garnets. An ab initio all-electron quantum mechanical simulation. Int J Quant Chem 2010;110:2192–201.

[52]

Durben DJ, Wolf GH. Raman spectroscopic study of the pressure-induced coordination change in GeO2 glass. Phys Rev B Condens Matter 1991;43:2355–63.

[53]

Anachkova E, Gospodinov M, Nikolov A, Svestarov P, Petkov N, Markov Yu, Limonov M, Bruchman G. Fundamental vibrations in Pb5(GeO4)(VO4)2 crystals[J]. Phys Status Solidi 1990;161:575–81.

[54]

Lv X, Wang Z, Chen XM. Structure and dielectric characteristics of Ca(Fe1/2Ta1/2)O3 complex perovskite ceramics. Ceram Int 2011;37:1033–7.

[55]

Yang Y, Zhai Y, Xiang H, Li J, Tang Y, Fang L. Rattling effects on microwave dielectric properties of Ca3TiBGe3O12 (B = Mg, Zn) garnets. J Eur Ceram Soc 2022;42:4566–72.

[56]

Muhammad R, Iqbal Y, Rambo CR. Structure–property relationship in NaCa4B5O17 (B = Nb, Ta) perovskites. J Mater Sci: Mater. 2015;26:2161–6.

[57]

Kozlovskiy A, Egizbek K, Zdorovets MV, Ibragimova M, Shumskaya A, Rogachev AA, Ignatovich ZV, Kadyrzhanov KJS. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 2020;20:4851.

[58]

Trukhanov SV, Bushinsky MV, Troyanchuk IO. Magnetic ordering in La1–xSrxMn3-xO3–x/2 anion-deficient manganites. J Exp Theor Phys 2004;99:756–65.

[59]

Lv X, Wang Z, Chen XMJCI. Structure and dielectric characteristics of Ca (Fe1/2Ta1/2) O3 complex perovskite ceramics. Ceram Int 2011;37:1033–7.

[60]

Gui L, Yang H, Zhao Q, Li E. Synthesis of low temperature firing scheelite-type BaWO4 microwave dielectric ceramics with high performances. Ceram Int 2022;48:1360–5.

[61]

Zhang P, Hao M, Xiao M, Zheng Z. Crystal structure and microwave dielectric properties of novel BiMg2MO6 (M = P, V) ceramics with low sintering temperature. J. Materiomics. 2021;7:1344–51.

[62]

Ren J, Bi K, Fu X, Peng Z. Novel Bi2O3-added Al2Mo3O12 composite microwave dielectric ceramics for ULTCC applications. J Alloys Compd 2020;823:153867.

[63]

Song J, Song K, Wei J, Lin H, Xu J, Wu J, Su W. Microstructure characteristics and microwave dielectric properties of calcium apatite ceramics as microwave substrates. J Alloys Compd 2018;731:264–70.

[64]

Pan HL, Mao YX, Cheng L, Wu HT. New Li3Ni2NbO6 microwave dielectric ceramics with the orthorhombic structure for LTCC applications. J Alloys Compd 2017;723:667–74.

[65]

Lv J, Cao Z, Wang Y, Shi F, Wang J. Crystal structures and microwave dielectric properties of Sr2MgWO6 ceramics at different sintering temperatures. J. Materiomics. 2022;8:79–87.

Journal of Materiomics
Pages 472-481
Cite this article:
He G, Liu Y, Zhou H, et al. Sintering behavior, phase composition, microstructure, and dielectric characteristics of garnet-type Ca3Fe2Ge3O12 microwave ceramics. Journal of Materiomics, 2023, 9(3): 472-481. https://doi.org/10.1016/j.jmat.2022.12.005

78

Views

13

Crossref

18

Web of Science

20

Scopus

Altmetrics

Received: 29 September 2022
Revised: 11 December 2022
Accepted: 20 December 2022
Published: 23 January 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return